Изобретение относится к методам неразрушающего контроля немагнитных металлических изделий и может быть использовано для контроля толщины металлического изделия и толщины диэлектрического покрытия его поверхности.
Известен способ вихретокового контроля толщины немагнитных электропроводящих металлических листов, основанный на возбуждении с помощью накладного трансформаторного вихретокового преобразователя в объекте контроля вихревых токов одной частоты, измерении комплексного значения вносимого напряжения вихретокового преобразователя, по которому определяют значение контролируемого параметра объекта контроля (Неразрушающий контроль. Справочник / под ред. В.В. Клюева: в 8 томах. Т 2: в 2-х кн.: Кн. 1: Контроль герметичности. Кн. 2: Вихретоковый контроль. - М.: Машиностроение, 2003. - 688 с.: с. 418-422). Благодаря различному влиянию на значение вносимого напряжения толщины листа, зазора между вихретоковым преобразователем и поверхностью листа, а также удельной электрической проводимости материала при контроле толщины листа может быть осуществлена амплитудно-фазовая отстройка от влияния на результаты измерения толщины листа изменений электропроводности материала либо зазора.
Недостатком этого способа является отсутствие возможности отстройки от влияния изменений одновременно двух влияющих факторов и малые диапазоны отстройки от изменений каждого из них.
Известен способ вихретокового контроля металлических немагнитных объектов (SU 1176231 А1, МПК4 G01N 27/90, опубл. 30.08.1985), основанный на возбуждении с помощью накладного вихретокового преобразователя в объекте контроля вихревых токов трех частот, первая из которых выбирается из условия пренебрежимо малого значения глубины проникновения магнитного поля по сравнению с толщиной объекта, вторая частота выбирается из условия приблизительного равенства глубины проникновения магнитного поля половине толщины объекта, третья частота выбирается из условия превышения глубины проникновения магнитного поля толщины объекта, измеряют вносимые напряжения трех частот. Вносимое напряжение вихретокового преобразователя на первой частоте зависит только от зазора h между преобразователем и объектом контроля, вносимое напряжение на второй частоте зависит от зазора h и удельной электрической проводимости материала σ, а вносимое напряжение на третьей частоте - от зазора h, удельной электрической проводимости материала а и толщины объекта Т.
По значению амплитуды вносимого напряжения первой частоты определяют значение зазора h между вихретоковым преобразователем и объектом контроля. По значениям комплексных составляющих вносимого напряжения второй частоты и рассчитанному значению зазора определяют значение удельной электрической проводимости материала σ, а по значениям комплексных составляющих вносимого напряжения третьей частоты и рассчитанным значениям зазора h и удельной электрической проводимости материала σ определяют значение толщины объекта Т. Для определения параметров объекта контроля: зазора h, удельной электрической проводимости материала σ и толщины объекта Т используются функции обратного преобразования, полученные в результате численного анализа функциональных зависимостей вносимых напряжений вихретокового преобразователя от указанных параметров объекта. Таким образом, обеспечивается возможность раздельного контроля величин h, σ и Т.
Недостатком известного способа является низкая достоверность контроля толщины стенки металлических немагнитных труб при значительных диапазонах изменения параметров объекта. Это обусловлено высокими погрешностями аппроксимации реальных функциональных зависимостей вносимых напряжений вихретокового преобразователя от параметров объекта предлагаемыми аналитическими выражениями даже в случае плоского объекта контроля и значительным возрастанием этих погрешностей в случае криволинейной формы объекта, что имеет место при контроле труб. Другим недостатком известного способа является сложность определения функции преобразования значений вносимых напряжений вихретокового преобразователя в значение контролируемого параметра особенно при отличии формы объекта контроля от плоской.
Известен способ вихретокового контроля металлических немагнитных объектов (RU 2656115 С1, МПК G01N 27/90 (2006.01), опубл. 31.05.2018), выбранный в качестве прототипа, основанный на возбуждении с помощью накладного вихретокового преобразователя в объекте контроля вихревых токов трех частот, первую из которых выбирают из условия пренебрежимо малого значения глубины проникновения магнитного поля по сравнению с толщиной стенки, вторую частоту выбирают из условия приблизительного равенства глубины проникновения магнитного поля половине толщины стенки, третью частоту выбирают из условия превышения глубины проникновения магнитного поля толщины стенки, измеряют вносимые напряжения трех частот. По значению амплитуды вносимого напряжения первой частоты определяют значение зазора между вихретоковым преобразователем и объектом контроля. Толщину стенки определяют на основе экспериментальной функциональной зависимости фазы вносимого напряжения третьей частоты от значения зазора и толщины стенки для фиксированного значения удельной электрической проводимости металла стенки трубы, соответствующего используемым при нахождении функциональной зависимости образцам труб. Для отстройки от изменения удельной электрической проводимости металла стенки трубы измеренное значение фазы вносимого напряжения третьей частоты корректируют на величину поправки, равной произведению разности измеренного значения фазы вносимого напряжения второй частоты и ее значения для используемых при нахождении функции преобразования образцов труб и поправочного коэффициента, значение которого определяется значением толщины стенки трубы и связано с ним экспоненциальной зависимостью.
Недостатком известного способа является низкая достоверность контроля толщины стенки металлических немагнитных труб при одновременном изменении влияющих параметров объекта в значительных диапазонах. Это обусловлено фактической зависимостью поправочного коэффициента не только от толщины стенки трубы, но и в значительной мере от зазора между вихретоковым преобразователем и объектом контроля, что в прототипе не учитывается.
Предложенное изобретение позволяет повысить достоверность контроля толщины стенки металлических немагнитных труб.
Согласно способу вихретокового контроля толщины стенки металлических немагнитных труб в объекте контроля с помощью накладного вихретокового преобразователя возбуждают вихревые токи трех частот, первую из которых выбирают из условия пренебрежимо малого значения глубины проникновения магнитного поля по сравнению с толщиной стенки, вторую частоту выбирают из условия приблизительного равенства глубины проникновения магнитного поля половине толщины стенки, третью частоту выбирают из условия превышения глубины проникновения магнитного поля толщины стенки, измеряют вносимые напряжения трех частот. По значению амплитуды вносимого напряжения первой частоты определяют значение зазора между вихретоковым преобразователем и объектом контроля. По значениям фазы вносимого напряжения третьей частоты и зазора определяют толщину стенки трубы. При этом для отстройки от влияния изменения удельной электрической проводимости металла стенки трубы значение фазы вносимого напряжения третьей частоты корректируют на величину поправки, равной произведению поправочного коэффициента и разности измеренного значения фазы вносимого напряжения второй частоты и ее значения для используемых при нахождении функции преобразования образцов труб. Значение поправочного коэффициента определяют по полученным значениям толщины стенки трубы и зазора с использованием линейной зависимости поправочного коэффициента от этих величин.
Основное отличие, обеспечивающее технический результат: учет зависимости поправочного коэффициента, используемого для коррекции значения фазы вносимого напряжения третьей частоты, не только от толщины стенки трубы, но и от зазора между вихретоковым преобразователем и объектом контроля, что обеспечивает более качественную отстройку от влияния изменений удельной электрической проводимости металла стенки трубы.
На фиг. 1 показана структурная схема устройства, реализующего предлагаемый способ.
На фиг. 2 показано поперечное сечение вихретокового преобразователя и части трубы.
На фиг. 3 изображен вид функции обратного преобразования относительного значения амплитуды вносимого напряжения первой частоты А1 в значение зазора h.
На фиг. 4 изображен вид функции обратного преобразования фазы ϕ3 вносимого напряжения третьей частоты в значение толщины стенки трубы Т для разных значений зазора h при фиксированном значении удельной электрической проводимости материала σ0.
На фиг. 5 представлен вид функциональной зависимости фазы ϕ20 вносимого напряжения второй частоты от зазора h при фиксированном значении удельной электрической проводимости материала σ0.
На фиг. 6 показан вид функциональной зависимости поправочного коэффициента s от толщины стенки трубы T для разных значений зазора h.
Устройство (фиг. 1), реализующее способ вихретокового контроля толщины стенки металлических немагнитных труб содержит первый 1 (Г1), второй 2 (Г2) и третий 3 (Г3) генераторы гармонических сигналов, накладной вихретоковый преобразователь 4 (ВТП), блок аналогового преобразования 5 (БАП), вычислительный блок 6 (ВБ), блок индикации 7 (БИ).
Выходы первого, второго и третьего генераторов гармонических сигналов 1-3 (Г1-Г3) соединены соответственно с первым, вторым и третьим входами накладного вихретокового преобразователя 4 (ВТП) и с первым, вторым и третьим входами блока аналогового преобразования 5 (БАП). Выход вихретокового преобразователя 4 (ВТП) соединен с четвертым входом блока аналогового преобразования 5 (БАП). Шесть выходов блока аналогового преобразования 5 (БАП) соединены каждый с отдельным входом вычислительного блока 6 (ВБ). Выход вычислительного блока 6 (ВБ) соединен со входом блока индикации 7 (БИ).
Один из возможных вариантов конструкции накладного вихретокового преобразователя 4 (ВТП) содержит обмотку возбуждения 8 (фиг. 2), измерительную обмотку 9 и компенсационную обмотку 10. Измерительная обмотка 9 и компенсационная обмотка 10 включены встречно.
При осуществлении контроля вихретоковый преобразователь 4 (ВТП) располагают вблизи объекта контроля 11. Генераторы гармонических сигналов 1-3 (Г1-Г3) вырабатывают гармонические сигналы с частотами ƒ1, ƒ2 и ƒ3.
Значения частот ƒ1, ƒ2 и ƒ3 должны удовлетворять условиям, при которых, глубина проникновения магнитного поля первой частоты пренебрежимо мала по сравнению с толщиной стенки трубы, глубина проникновения магнитного поля второй частоты приблизительного равна половине толщины стенки, глубина проникновения магнитного поля третьей частота превышает толщину стенки трубы.
Выходные сигналы генераторов 1-3 (Г1-Г3) подают на обмотку возбуждения 8 накладного вихретокового преобразователя 4 (ВТП). Ток этой обмотки имеет три гармонические составляющие частот ƒ1, ƒ2 и ƒ3 и создает трехчастотное магнитное поле. Измерительная 9 и компенсационная 10 обмотки вихретокового преобразователя 4 (ВТП) включены встречно, поэтому при отсутствии вблизи него электропроводящего объекта выходной сигнал вихретокового преобразователя равен нулю. При наличии вблизи вихретокового преобразователя 4 (ВТП) электропроводящего объекта трехчастотное магнитное поле возбуждения наводит в контролируемом изделии вихревые токи трех частот.Магнитное поле этих вихревых токов обуславливает возникновение выходного сигнала (вносимого напряжения) вихретокового преобразователя 4 (ВТП). Блоком аналогового преобразования 5 (БАП) осуществляют выделение комплексных составляющих сигнала вихретокового преобразователя 4 (ВТП), обусловленных каждой из трех частотных составляющих магнитного поля вихревых токов. Для выполнения этой функции в состав блока аналогового преобразования 5 (БАП) входят частотно-избирательные блоки и блоки амплитудно-фазового детектирования, используемые, например, в устройствах, реализующих способ-аналог и способ-прототип.
Выходные сигналы блока аналогового преобразования 5 (БАП) пропорциональны амплитудам действительной и мнимой комплексных составляющих вносимых напряжений частот ƒ1, ƒ2, ƒ3:
Благодаря указанному ранее выбору частот генераторов гармонических сигналов, выделенные составляющие сигнала вихретокового преобразователя на первой частоте зависят только от зазора h между вихретоковым преобразователем 4 (ВТП) и объектом 11, составляющие сигнала на второй частоте зависят от зазора h и удельной электропроводности материала σ, а составляющие сигнала на третьей частоте - от зазора h, удельной электропроводности материала σ и толщины Т объекта.
Вычислительным блоком 6 (ВБ) осуществляется вычислительное преобразование выходных сигналов блока аналогового преобразования 5 (БАП) в измеряемое значение контролируемого параметра. Для этого вычисляются амплитуда вносимого напряжения первой частоты А1 и фазы ϕ2 и ϕ3 вносимых напряжений второй и третьей частот:
Дальнейшее вычислительное преобразование сигналов измерительной информации осуществляется с использованием функций преобразования, определяемых экспериментально с использованием образцов труб различной толщины Т с фиксированной удельной электрической проводимостью материала σ0 при различных значениях зазора h. Количества используемых образцов толщины и зазора определяются требуемыми точностью и диапазоном измерения и для широкого круга задач контроля составляют порядка десяти.
В соответствии с предлагаемым способом вычислительным блоком 6 (ВБ) вычисляется значение зазора h. Для этого используется функция обратного преобразования относительного значения амплитуды А1 вносимого напряжения первой частоты в значение зазора h (фиг. 3), определяемая путем численного анализа экспериментальной зависимости амплитуды А1 от зазора h. Данная функция с достаточной для решения широкого круга задач контроля точностью аппроксимируется зависимостью вида
где а - коэффициент, зависящий от наружного диаметра трубы, конструктивных параметров вихретокового преобразователя и диапазона изменений зазора h;
A10 - значение амплитуды при h=0.
Далее осуществляется определение промежуточного значения толщины стенки Т в предположении, что удельная электрическая проводимость материала трубы σ равна удельной электрической проводимости образцов σ0. Для этого используется функциональная зависимость толщины стенки трубы T(h, ϕ3) от зазора h и фазы ϕ3. Вид этой функциональной зависимости показан на фиг. 4. Для определения значения Т сначала определяют ближайшие к измеренному значению h его дискретные значения hi и hi+1, соответствующие толщинам образцов, использованных для определения зависимости, показанной на фиг. 4. Далее производится расчет соответствующих значений Ti(hi, ϕ3) и Ti+1(hi+1, ϕ3). Значение толщины Т вычисляется в предположении линейности зависимости в малом диапазоне изменений зазора h:
Дальнейшие вычислительные преобразования обеспечивают отстройку от влияния на результат контроля изменений удельной электрической проводимости материала σ. Для этого определяется значение фазы ϕ20 вносимого напряжения второй частоты при измеренном зазоре h и значении удельной электрической проводимости σ0, соответствующей используемым для определения функций преобразования образцам. Вид экспериментальной зависимости фазы ϕ20 от зазора h показан на фиг. 5. С высокой степенью приближения данная зависимость аппроксимируется функцией
ϕ20=-ехр(b+ch+dh2),
где b, с и d - экспериментально определяемые коэффициенты, зависящие от наружного диаметра трубы, частоты ƒ2, значения удельной электрической проводимости σ0 и конструктивных параметров вихретокового преобразователя.
Далее вычисляется разность фаз Δϕ2 между измеренным значением фазы ϕ2 вносимого напряжения второй частоты и ее значением ϕ20 для используемых при определении функций преобразования образцов труб:
Δϕ2=ϕ2-ϕ20.
Следующей вычислительной операцией является определение разности фаз Δϕ3 между измеренным значением фазы ϕ3 вносимого напряжения третьей частоты и ее значением ϕ30 для используемых при определении функций преобразования образцов. Как показывают результаты математического и физического моделирования разность фаз Δϕ3, обусловленная отличием значения удельной электрической проводимости материала контролируемой трубы σ от ее значения σ0, соответствующего используемым для определения функций преобразования образцам, связана с разностью фаз Δϕ2, обусловленной этой же причиной, линейной зависимостью вида
Δϕ3=sΔϕ2,
где множитель s является функцией толщины стенки трубы T и зазора h:
s=s(T, h).
Вид этой функциональной зависимости показан на фиг. 6. С приемлемой степенью приближения зависимость s(T, h) описывается функцией
s(T, h)=e0+e1T+e2Th+e3h,
где e0, е1, e2 и е3 - экспериментально определяемые коэффициенты, зависящие от наружного диаметра трубы, значения удельной электрической проводимости σ0, значений второй ƒ2 и третьей ƒ3 частот и конструктивных параметров вихретокового преобразователя.
При определении значения множителя s, необходимого для вычисления значения величины Δϕ3, используются рассчитанные ранее значения зазора h и толщины Т. Затем вычисляется скорректированное значение фазы вносимого напряжения третьей частоты, соответствующее используемым для определения функций преобразования образцам:
ϕ30=ϕ3-Δϕ3.
Далее с использованием нового скорректированного значения фазы вносимого напряжения третьей частоты ϕ30 осуществляется повторное вычисление уточненного значения толщины Т с использованием зависимости фиг. 4. Найденное уточненное значение толщины Т вновь используется для последовательных вычислений значений величин s, Δϕ3, ϕ30 и нового уточненного значения толщины Т. Описанный цикл вычислений повторяется (2…5) раз в зависимости от требуемой точности и степени дискретности значений зазоров. Значение толщины Т, рассчитанное в последнем цикле принимается в качестве результата измерения контролируемого параметра Т.
Блоком индикации 7 (БИ) осуществляется индикация результата контроля.
Эффективность использования предлагаемого способа вихретокового контроля толщины стенки металлических немагнитных труб в условиях значительных изменений зазора между вихретоковым преобразователем и поверхностью объекта и удельной электрической проводимости материала была подтверждена результатами лабораторных испытаний опытного образца устройства при контроле толщины стенки легкосплавных бурильных труб из дюраля Д16Т с наружным диаметром 147 мм и толщиной стенки в диапазоне (5…15) мм. Был использован накладной трансформаторный дифференциальный вихретоковый преобразователь, конструкция которого схематично показана на фиг. 2. Использовались частоты составляющих тока возбуждения 100 кГц, 2500 Гц и 125 Гц. Для определения функций преобразования использовались 11 образцов труб с толщинами стенки из указанного диапазона и с удельной электрической проводимостью материала 16 МСм/м. Для изменения значения зазора использовались 12 образцов зазора (диэлектрических пластинок) толщиной (1…15) мм. Для определения функциональной зависимости измеряемых сигналов от изменений удельной электрической проводимости и проверки эффективности отстройки от влияния изменений электропроводности применялось изменение температуры образцов в диапазоне (-10…+80)°С. Диапазон изменения значений множителя s, используемого для корректировки значений фазы вносимого напряжения третьей частоты по результатам измерения фазы второй частоты, составлял от 3,2 до 5,3.
Результаты испытаний опытного образца устройства показали, что при использовании предлагаемого способа контроля при одновременном изменении всех влияющих параметров в указанных диапазонах абсолютная погрешность измерения толщины стенки не превышает 0,25 мм, что примерно на 15% меньше, чем при реализации способа-прототипа.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ ТОЛЩИНЫ СТЕНКИ МЕТАЛЛИЧЕСКИХ НЕМАГНИТНЫХ ТРУБ | 2016 |
|
RU2656115C1 |
УСТРОЙСТВО ДЛЯ ВИХРЕТОКОВОГО КОНТРОЛЯ МЕТАЛЛИЧЕСКИХ НЕМАГНИТНЫХ ОБЪЕКТОВ | 2016 |
|
RU2629711C1 |
СПОСОБ ВЫЯВЛЕНИЯ ГАЗОНАСЫЩЕННЫХ СЛОЕВ НА ТИТАНОВЫХ СПЛАВАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2115115C1 |
Устройство контроля качества точечной сварки | 1984 |
|
SU1226267A1 |
СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ | 2017 |
|
RU2664867C1 |
Способ вихретокового контроля углепластиковых объектов | 2019 |
|
RU2729457C1 |
Способ вихретокового контроля | 1990 |
|
SU1762218A1 |
СПОСОБ КОНТРОЛЯ СВОЙСТВ ОБЪЕКТА ИЗ ЭЛЕКТРОПРОВОДЯЩИХ МАТЕРИАЛОВ | 2008 |
|
RU2371672C2 |
Способ контроля зазора и параметров немагнитного электропроводящего слоя | 1986 |
|
SU1392348A1 |
Устройство для измерения удельной электрической проводимости немагнитных материалов | 1983 |
|
SU1174841A1 |
Использование: для вихретокового контроля толщины стенки металлических немагнитных труб. Сущность изобретения заключается в том, что осуществляют возбуждение с помощью накладного вихретокового преобразователя в объекте контроля вихревых токов трех частот, первую из которых выбирают из условия пренебрежимо малого значения глубины проникновения магнитного поля по сравнению с толщиной стенки, вторую частоту выбирают из условия приблизительного равенства глубины проникновения магнитного поля половине толщины стенки, третью частоту выбирают из условия превышения глубины проникновения магнитного поля толщины стенки, измеряют вносимые напряжения трех частот, по значению амплитуды вносимого напряжения первой частоты определяют значение зазора между вихретоковым преобразователем и объектом контроля, толщину стенки определяют на основе экспериментальной функциональной зависимости фазы вносимого напряжения третьей частоты от значения зазора и толщины стенки для фиксированного значения удельной электрической проводимости металла стенки трубы, соответствующего используемым при нахождении функциональной зависимости образцам труб, а для отстройки от изменения удельной электрической проводимости металла стенки трубы измеренное значение фазы вносимого напряжения третьей частоты корректируют на величину поправки, равной произведению разности измеренного значения фазы вносимого напряжения второй частоты и ее значения для используемых при нахождении функции преобразования образцов труб и поправочного коэффициента, при этом значение поправочного коэффициента определяют по полученным значениям толщины стенки трубы и зазора с использованием линейной зависимости поправочного коэффициента от этих величин. Технический результат: повышение достоверности контроля толщины стенки металлических немагнитных труб. 6 ил.
Способ вихретокового контроля толщины стенки металлических немагнитных труб, включающий возбуждение с помощью накладного вихретокового преобразователя в объекте контроля вихревых токов трех частот, первую из которых выбирают из условия пренебрежимо малого значения глубины проникновения магнитного поля по сравнению с толщиной стенки, вторую частоту выбирают из условия приблизительного равенства глубины проникновения магнитного поля половине толщины стенки, третью частоту выбирают из условия превышения глубины проникновения магнитного поля толщины стенки, измеряют вносимые напряжения трех частот, по значению амплитуды вносимого напряжения первой частоты определяют значение зазора между вихретоковым преобразователем и объектом контроля, толщину стенки определяют на основе экспериментальной функциональной зависимости фазы вносимого напряжения третьей частоты от значения зазора и толщины стенки для фиксированного значения удельной электрической проводимости металла стенки трубы, соответствующего используемым при нахождении функциональной зависимости образцам труб, а для отстройки от изменения удельной электрической проводимости металла стенки трубы измеренное значение фазы вносимого напряжения третьей частоты корректируют на величину поправки, равной произведению разности измеренного значения фазы вносимого напряжения второй частоты и ее значения для используемых при нахождении функции преобразования образцов труб и поправочного коэффициента, отличающийся тем, что значение поправочного коэффициента определяют по полученным значениям толщины стенки трубы и зазора с использованием линейной зависимости поправочного коэффициента от этих величин.
СПОСОБ ВИХРЕТОКОВОГО КОНТРОЛЯ ТОЛЩИНЫ СТЕНКИ МЕТАЛЛИЧЕСКИХ НЕМАГНИТНЫХ ТРУБ | 2016 |
|
RU2656115C1 |
Трехпараметровый способ вихретокового контроля металлических немагнитных объектов | 1983 |
|
SU1176231A1 |
СПОСОБ ВИХРЕТОКОВОГО ИЗМЕРЕНИЯ ТОЛЩИНЫ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ | 2011 |
|
RU2456589C1 |
Способ вихретоковой дефектоскопии изделий | 1985 |
|
SU1335861A1 |
US 6424151 B1, 23.07.2002 | |||
US 6566871 B2, 20.05.2003. |
Авторы
Даты
2022-11-29—Публикация
2022-04-26—Подача