Способ формирования силицида Российский патент 2022 года по МПК H01L21/283 

Описание патента на изобретение RU2786689C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления слоев силицида с пониженным сопротивлением контакта.

Известен способ создания силицида титана [Патент 5326724 США, МКИ H01L 21/293]покрытого слоем окисла. Между слоями металла и окисла располагают слой ТiN толщиной 80-100нм, который наносят реактивным распылением, добавляя N2 в реактор. Слой ТiN обеспечивает упрощение технологии формирования топологического рисунка. В таких приборах из-за низкой технологичности процесса создания силицида титана, повышается дефектность структуры и ухудшаются электрические параметры приборов.

Известен способ изготовления полупроводникового прибора [Патент 5316977 США, МКИ H01L 21/223] содержащего силицид металла. На легированной подложке формируют слой силицида металла, легированный примесью другого типа. Затем проводят отжиг полученной структуры в восстановительной атмосфере при температуре 600-800°С. Легирование проводят из газовой фазы или путем нанесения на диффузионный слой пленки переходного металла, который взаимодействует с полупроводниковой подложкой с образованием примеси второго типа. В качестве переходного металла можно использовать Ti, W, Mo, Co.

Недостатками этого способа являются:

- высокие значения сопротивления контакта;

- высокая дефектность;

- низкая технологичность.

Задача, решаемая изобретением: снижения сопротивления контакта, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается путем формирования слоя силицида электронно-лучевым испарением при давлении 1.10-5 Па, напылением Pd толщиной 50 нм с последующим воздействием пучка ионов Ar энергией 200 кэВ под углом 7° дозой 3.1016 см-2, плотностью тока ионного пучка 1,5 мкА/см2, температура 50°С, скорость роста 0,3 нм/с, отжигом при температуре 200°С в вакууме 1.10-3 Па в течение 10мин.

Технология способа состоит в следующем: на пластинах кремния формировали слой силицида с использованием электронно-лучевого испарения при давлении 1.10-5 Па, напылением Pd толщиной 50нм. Затем образцы подвергали воздействию пучка ионов Ar с энергией 200 кэВ под углом 7° дозой 3.1016 см-2 плотностью тока ионного пучка 1,5 мкА/см2, температура 50°С, скорость роста 0,3 нм/с, отжигом при температуре 200°С в вакууме 1.10-3 Па в течение 10мин. При этом образуется однородный силицидный слой Pd2Si.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Параметры полупроводникового прибора, изготовленного по стандартной технологии Параметры полупроводникового прибора, изготовленного по предлагаемой технологии плотность дефектов, см-2 сопротивления, Ом плотность дефектов, см-2 сопротивления, Ом 1 4,5 5,4 1,3 0,9 2 5,2 5,5 1,1 1,3 3 4,6 5,6 1,4 1,1 4 4,1 5,3 1,2 1,5 5 4,2 5,2 2,1 0,8 6 5,1 5,7 1,6 1,1 7 5,4 4,9 2,2 0,7 8 4,9 4,7 1,7 1,2 9 4,3 4,5 1,5 0,9 10 5,3 5,9 1,4 1,5 11 4,8 5,1 2,1 0,8 12 4,7 4,6 1,8 0,6 13 5,5 5,4 1,9 0,9

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 16,3%.

Технический результат: снижения сопротивления контакта, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ формирования слоя силицида электронно-лучевым испарением при давлении 1.10-5 Па, напылением Pd толщиной 50 нм с последующим воздействием пучка ионов Ar энергией 200 кэВ под углом 7° дозой 3.1016 см-2, плотностью тока ионного пучка 1,5 мкА/см2, температура 50°С, скорость роста 0,3 нм/с, отжигом при температуре 200°С в вакууме 1.10-3 Па в течение 10 мин позволяет повысить процент выхода годных приборов и улучшить их надежность.

Похожие патенты RU2786689C1

название год авторы номер документа
Способ изготовления радиационно стойкого полупроводникового прибора 2022
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2794041C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2014
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2594615C2
Способ изготовления силицида никеля 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2734095C1
Способ изготовления мелкозалегающих переходов 2021
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2757539C1
Способ изготовления полупроводникового прибора 2017
  • Кутуев Руслан Азаевич
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2650350C1
Способ изготовления силицида титана 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
RU2751983C1
Способ изготовления силицидных контактов из вольфрама 2021
  • Мустафаев Гасан Абакарович
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
  • Мустафаев Абдулла Гасанович
RU2757177C1
Способ изготовления контактно-барьерной металлизации 2018
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2698540C1
Способ увеличения адгезии 2021
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2793798C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2008
  • Мустафаев Абдулла Гасанович
  • Мустафаев Гасан Абакарович
  • Мустафаев Арслан Гасанович
RU2433501C2

Реферат патента 2022 года Способ формирования силицида

Изобретение относится к области технологии производства полупроводниковых приборов. Способ формирования силицида включает электронно-лучевое нанесение палладия толщиной 50 нм в вакууме на кремниевую подложку и отжиг, при этом согласно изобретению нанесение осуществляют испарением, которое проводят в вакууме при давлении 1·10-5 Па с последующим воздействием пучка ионов Ar энергией 200 кэВ под углом 7° дозой 3·1016 см-2 и плотностью тока ионного пучка 1,5 мкА/см2 при температуре 50°С со скоростью роста 0,3 нм/с, а отжиг осуществляют при температуре 200°С в вакууме 1·10-3 Па в течение 10 мин. Изобретение обеспечивает возможность снижения сопротивления контакта прибора, улучшение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Формула изобретения RU 2 786 689 C1

Способ формирования силицида, включающий электронно-лучевое нанесение палладия толщиной 50 нм в вакууме на кремниевую подложку и отжиг, отличающийся тем, что нанесение осуществляют испарением, которое проводят в вакууме при давлении 1·10-5 Па с последующим воздействием пучка ионов Ar энергией 200 кэВ под углом 7° дозой 3·1016 см-2 и плотностью тока ионного пучка 1,5 мкА/см2 при температуре 50°С со скорость роста 0,3 нм/с, а отжиг осуществляют при температуре 200°С в вакууме 1·10-3 Па в течение 10 мин.

Документы, цитированные в отчете о поиске Патент 2022 года RU2786689C1

Способ изготовления полупроводникового прибора 2018
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2688861C1
US 8865593 B2, 21.10.2014
US 7229920 B2, 12.06.2007
US 5316977 A, 31.05.1994.

RU 2 786 689 C1

Авторы

Мустафаев Гасан Абакарович

Мустафаев Абдулла Гасанович

Мустафаев Арслан Гасанович

Черкесова Наталья Васильевна

Даты

2022-12-23Публикация

2022-02-02Подача