Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицидных слоев с низким сопротивлением.
Известен способ изготовления интегральных схем с применением слоя нитрида титана TiN (заявка 2133964, Япония, МКИ Н01L 29/46), который служит в качестве барьерного слоя с добавлением 1-10 ат % углерода С. Такая добавка улучшает качество TiN, предохраняет его от появления механических повреждений и растрескиваний после термообработок. При этом образуются неоднородные слои, ухудшающие характеристики барьерных слоев.
Известен способ изготовления прибора формированием слоя силицида титана на кремниевой пластине [Пат. 5043300, США, МКИ Η01L 21/283] последовательным проведением плазменной очистки пластины Si, напыления в вакууме слоя титана в атмосфере, не содержащей кислорода, отжиг в среде азота при 500-695°C в течение 20-60 с с формированием слоев силицида титана и нитрида, повторный отжиг при температуре 800-900°C с образованием стабильной фазы силицида титана, удаление остатков нитрида титана.
Недостатками этого способа являются:
- появление избыточных токов утечки;
- повышение значения механических напряжений;
- низкая технологическая воспроизводимость.
Задача, решаемая изобретением, - снижение сопротивления, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных.
Задача решается путем осаждения поликремния и последующей ионной имплантации в слой поликремния ионов переходного металла и проведения релаксационного отжига.
Технология способа состоит в следующем: на кремниевую пластину наносят слои поликремния, затем имплантируют ионы переходного металла Со+ с энергией 250 кэВ при токе ионного пучка 1 мкА, интегральной дозой 4,4·1017 см2. Способ включает также процессы очистки пластины кремния, создания активных областей прибора, отжиг и формирование слоев силицида. После имплантации ионов кобальта в поликремний в ней образуются монокристаллические слои CoSi2. Кобальт образует стабильный низкоомный дисилицид. Ионную имплантацию проводят в нелегированные слои поликремния толщиной 150 нм, химически осажденные из паровой фазы низкого давления. После имплантации проводят релаксационный отжиг, сканирующим электронным пучком при температуре 950°С в течение 10-20 с. После отжига образуется стабильный слой толщиной 100 им. Прямая имплантация ионов переходного металла с последующим отжигом позволяет обходиться без реакции металл на поликремния и исключается проблема диффузионных барьеров, поскольку ионы металла проникают внутрь поликремния, отличающийся тем, что перед формированием слоев силицида наносят слой поликремния Со+ с энергией 250 кэВ при токе ионного пучка 1 мкА, интегральной дозой 4,4·1017 см-2, с последующим проведением релаксационного отжига, сканирующим электронным пучком при температуре 950°С в течение 10-20 с.
По предлагаемому способу были изготовлены и исследованы полупроводниковые структуры. Результаты представлены в таблице.
Экспериментальные исследования показали, что выход годных полупроводниковых структур на партии пластин, сформированных в оптимальном режиме, увеличился на 17,9%.
Технический результат: снижение сопротивления, обеспечивающее технологичность, улучшения параметров, повышения надежности и увеличения процента выхода годных приборов.
Предложенный способ изготовления полупроводниковых приборов ионной имплантацией слоя поликремния ионами переходного металла с последующим релаксационным отжигом позволяет повысить процент выхода годных структур.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления полупроводникового прибора | 2018 |
|
RU2688874C1 |
Способ формирования силицида | 2022 |
|
RU2786689C1 |
Способ изготовления мелкозалегающих переходов | 2020 |
|
RU2748335C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА | 2008 |
|
RU2433501C2 |
Способ изготовления полупроводникового прибора | 2022 |
|
RU2785083C1 |
Способ изготовления мелкозалегающих переходов | 2021 |
|
RU2757539C1 |
Способ изготовления силицида титана | 2020 |
|
RU2751983C1 |
Способ изготовления полупроводникового прибора | 2015 |
|
RU2610056C1 |
Способ изготовления полупроводникового прибора | 2017 |
|
RU2650350C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ | 2009 |
|
RU2402101C1 |
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления силицидных слоев с низким сопротивлением. Задача, решаемая изобретением, - снижение сопротивления, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. В способе изготовления полупроводникового прибора, включающем процессы очистки пластины кремния, создания активных областей прибора, отжиг и формирование слоев силицида, перед формированием слоев силицида наносят слой поликремния, после чего структуры подвергают обработке ионами Со+ с энергией 250 кэВ при токе ионного пучка 1 мкА, интегральной дозой 4,4×1017 см-2, с последующим проведением релаксационного отжига сканирующим электронным пучком при температуре 950°С в течение 10-20 с. 1 табл.
Способ изготовления полупроводникового прибора, включающий кремниевую пластину, процессы очистки пластины кремния, создания активных областей прибора, отжиг и формирование слоев силицида, отличающийся тем, что перед формированием слоев силицида наносят слой поликремния, после чего структуры подвергают обработке ионами Со+ с энергией 250 кэВ при токе ионного пучка 1 мкА, интегральной дозой 4,4×1017 см-2, с последующим проведением релаксационного отжига сканирующим электронным пучком при температуре 950°С в течение 10-20 с.
US 6924544 B2, 02.08.2005 | |||
US 6858487 B2, 22.02.2005 | |||
US 4713358 A, 15.12.1987 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ ФОРМИРОВАТЕЛЯ ИЗОБРАЖЕНИЯ НА ПЗС САМОРЕГУЛИРУЮЩЕГОСЯ ТИПА | 1991 |
|
RU2038652C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕЗОТАКСИАЛЬНЫХ СЛОЕВ ДИСИЛИЦИДА КОБАЛЬТА В КРЕМНИИ | 1990 |
|
SU1795821A1 |
Авторы
Даты
2016-08-20—Публикация
2014-10-13—Подача