ЛАЗЕРНЫЙ СПЕКТРОГРАФ Российский патент 2023 года по МПК G01J3/12 

Описание патента на изобретение RU2787305C1

Изобретение относится к оптическому спектральному приборостроению и может быть использована в спектрографах, предназначенных для получения и регистрации атомных и молекулярных спектров при проведении наблюдений за свечением верхней атмосферы в целях обнаружения продуктов, образующихся при проведении ядерных взрывов. [МПК 7G01J3/00]

Известен призменный светосильный спектрометр СП-48, в котором для регистрации применялась п.з.с.-камера разработки ИЯФ СО РАН [1] с областью чувствительности 400-850 нм (прототип). В качестве аналогов могут выступать спектрограф с дифракционной решеткой [2], спектрометры интерференционные с селективной амплитудной модуляцией (СИСАМ) [3, 4, 5].

Принципиальная оптическая схема построения такой аппаратуры показана на фиг.1. Она содержит входной коллиматор 1, диспергирующий элемент 2 и выходную регистрирующую камеру 3. Исследуемое излучение через щель S входного коллиматора поступает на объектив O1, который формирует параллельный пучок излучения и направляет его на диспергирующий элемент.

Диспергирующий элемент обеспечивает разложение светового пучка на систему лучей, выходящих из него под различными углами (в зависимости от длины волны падающего излучения. Камерный объектив О1 фокусирует в фокальной плоскости F совокупность изображений входной щели в разных длинах волн. Это изображение характеризует спектр излучения и регистрируется в виде спектрограммы.

Действие диспергирующих элементов основано на явлениях дисперсии, дифракции в сочетании с интерференцией и многолучевой интерференции света. В зависимости от типа применяемого диспергирующего элемента различают призматическую, дифракционную и интерференционную спектрографическую аппаратуру [4, 5].

Обнаружение продуктов, образующихся при проведении ядерных взрывов (например, лития) и измерение их концентрации на большой высоте производятся дистанционно путем регистрации испускаемого резонансного излучения (например, атомарным литием) с помощью наземной спектрографической аппаратуры. Сам по себе любой изотоп химического элемента (например, литий) не является источником излучения. Однако под действием солнечного света его атомы возбуждаются и начинают флуоресцировать в оптическом диапазоне длин волн (например, для лития это красная область спектра с характерной длиной волны 670,8 нм).

Обнаружение достаточно интенсивной линии с характерной длиной волны в спектре свечения сумеречного неба позволяет считать, что причиной ее является ядерный взрыв.

Недостатком наблюдений за свечением верхней атмосферы в целях обнаружения продуктов, образующихся при проведении ядерных взрывов с применением прототипа и аналогов является то, что они практически возможны и производятся лишь во время утренних и вечерних сумерек по следующим причинам:

в дневное время интенсивность прямого и рассеянного солнечного света настолько велика, что зарегистрировать на таком фоне сравнительно слабое свечение искомых продуктов практически нельзя;

при сумерках освещаются солнцем лишь верхние слои атмосферы, где и находятся продукты (например, литий) взрывного происхождения; нижние слои при этом не освещаются и не создают фона, мешающего производить съемки;

в ночное время не происходит возбуждения искомых продуктов.

Задачей изобретения является создание спектрографа, обеспечивающего получение технического результата, состоящего в возможности осуществлять фотографическую регистрацию спектра свечения неба и в ночное время. Этот технический результат в предлагаемом лазерном спектрографе, содержащем элементы, представленные на фиг. 1, отличающемся тем, что по направлению съемки (вдоль исследуемого излучения, поступающего через щель S) установлен лазер, а фокальная плоскость F выполнена в виде площадного сенсора (например, ПЗС (CCD) - матрицы, КМОП (CMOS) - матрицы, 3CCD-матрицы, DX-матрицы, матрицы Foveon X3 и т.п.), достигается за счет подсветки лазерным лучом верхних слоев атмосферы, приводящей к лазерно-индуцированной флюоресценции продуктов, образующихся при проведении ядерных взрывов.

Сущность изобретения поясняется чертежом, где на фиг. 2 изображены принципиальная оптическая схема построения спектрографической аппаратуры в составе входного коллиматора 1, диспергирующего элемента 2 и выходной регистрирующей камеры 3, и лазер 4.

Устройство работает следующим образом. Лазер подсвечивает верхние слои атмосферы, вызывая лазерно-индуцированную флюоресценцию продуктов, образующихся при проведении ядерных взрывов. Под действием лазерного луча атомы искомых продуктов возбуждаются и начинают флуоресцировать в оптическом диапазоне со своими уникальными характерными длинами волн. Это флуоресцентное излучение и регистрируется в виде спектрограммы на площадном сенсоре (в отличие от прототипа, производящего съемку на фотопленку), которая может подаваться в цифровом виде для дальнейшей обработки в ЭВМ.

Сравнительный анализ с прототипом показал, что заявленное изобретение за счет применения лазера позволяет проводить спектрографические измерения в сумеречное и темное время суток, расширяя временные возможности обнаружения продуктов, образующихся при проведении ядерных взрывов. Также повышается оперативность анализа получаемой информации за счет применения в качестве фокальной плоскости площадного сенсора, позволяющего проводить аналого-цифровое преобразование информации для ее обработки в ЭВМ, чего не было в прототипе.

Следовательно, техническое решение соответствует критерию "новизна".

Кроме того, так как заявленный технический результат может быть использован в системах мониторинга (ядерных взрывов, атмосферы, окружающей среды и т.п.), то изобретение соответствует критерию «промышленная применимость».

Источники информации

1. Спектроскопические исследования на установке ГОЛ-3 взаимодействия мощного плазменного потока с твердым телом. Научный журнал «Приборы и техника эксперимента». ISSN: 0032-8162, 2008, №2. С. 100-107.

2. Бажанов Ю.В. Спектрограф. Патент на изобретение №2329476 от 20.07.2008.

3. Кириченко Н.А., Лопатин А.И., Раховский В.И., Вершинский А.Е., Иоаннисиани А.Б. Спектрометр с интерференционной селективной амплитудной модуляцией. Авторское свидетельство на изобретение №1362949 от 30.12.1987.

4. Козлов М.Г. Метрология и стандартизация. - М., СПб.: Изд-во «Петербургский институт печати», 2001. - 372°с.

5. Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия. Главный редактор А.М. Прохоров, 1988.

Похожие патенты RU2787305C1

название год авторы номер документа
СЕЙСМОГРАФ С ЛАЗЕРНОЙ РЕГИСТРАЦИЕЙ 2021
  • Шушлебин Алексей Сергеевич
RU2786338C1
ЗЕРКАЛЬНЫЙ СЕЙСМОГРАФ 2021
  • Шушлебин Алексей Сергеевич
RU2786340C1
ОПТИЧЕСКИЙ ПРОФИЛОМЕТР 1994
  • Кожеватов И.Е.
  • Куликова Е.Х.
  • Черагин Н.П.
RU2085843C1
СПОСОБ ОПРЕДЕЛЕНИЯ И ПОСТРОЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ОКЕАНОГРАФИЧЕСКИХ ХАРАКТЕРИСТИК И СИСТЕМА ОПРЕДЕЛЕНИЯ И ПОСТРОЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ОКЕАНОГРАФИЧЕСКИХ ХАРАКТЕРИСТИК 2014
  • Дроздов Александр Ефимович
  • Чернявец Владимир Васильевич
  • Аносов Виктор Сергеевич
  • Жильцов Николай Николаевич
  • Мирончук Алексей Филиппович
  • Шаромов Вадим Юрьевич
  • Полюга Сергей Игоревич
  • Шарков Андрей Михайлович
  • Свиридов Валерий Петрович
RU2556289C1
Способ подводного спектрального анализа морской воды и донных пород 2019
  • Букин Олег Алексеевич
  • Прощенко Дмитрий Юрьевич
  • Букин Илья Олегович
  • Буров Денис Викторович
  • Матецкий Владимир Тимофеевич
  • Чехленок Алексей Анатольевич
RU2719637C1
СПОСОБ ДИАГНОСТИКИ ДЕФЕКТОВ НА МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЯХ 2014
  • Новиков Андрей Александрович
  • Котелев Михаил Сергеевич
  • Копицын Дмитрий Сергеевич
  • Тиунов Иван Александрович
  • Горбачевский Максим Викторович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Винокуров Владимир Арнольдович
RU2581441C1
СПОСОБ СОЗДАНИЯ ОПТИЧЕСКИ ПРОНИЦАЕМОГО ИЗОБРАЖЕНИЯ ВНУТРИ АЛМАЗА, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ДЕТЕКТИРОВАНИЯ УКАЗАННОГО ИЗОБРАЖЕНИЯ 2011
  • Васильев Виталий Валентинович
  • Величанский Владимир Леонидович
  • Зибров Сергей Александрович
  • Ионин Андрей Алексеевич
  • Кудряшов Сергей Иванович
  • Левченко Алексей Олегович
  • Селезнев Леонид Владимирович
  • Синицын Дмитрий Васильевич
RU2465377C1
АКУСТООПТИЧЕСКИЙ ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ РАДИОСИГНАЛОВ С ПОВЫШЕННЫМ РАЗРЕШЕНИЕМ 2014
  • Шибаев Станислав Сергеевич
  • Волик Денис Петрович
  • Помазанов Александр Васильевич
RU2584182C1
СПОСОБ АТОМНО-АБСОРБЦИОННОГО СПЕКТРАЛЬНОГО АНАЛИЗА ЭЛЕМЕНТНОГО СОСТАВА ВЕЩЕСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Корепанов В.И.
  • Лисицын В.М.
  • Олешко В.И.
RU2157988C2
СПОСОБ ФЛУОРЕСЦЕНТНОЙ ДИАГНОСТИКИ ПОРАЖЕНИЙ РОГОВИЦЫ 2007
  • Аветисов Сергей Эдуардович
  • Балаян Марина Леонидовна
  • Будзинская Мария Викторовна
  • Ворожцов Георгий Николаевич
  • Кузьмин Сергей Георгиевич
  • Лощенов Виктор Борисович
  • Мамиконян Вардан Рафаэлович
  • Страховская Марина Глебовна
  • Федоров Анатолий Александрович
  • Шевчик Сергей Александрович
RU2355285C2

Иллюстрации к изобретению RU 2 787 305 C1

Реферат патента 2023 года ЛАЗЕРНЫЙ СПЕКТРОГРАФ

Изобретение относится к оптическому приборостроению и касается спектрографа, предназначенного для фотографической регистрации спектра свечения неба. Спектрограф содержит лазер, входной коллиматор, диспергирующий элемент и выходную регистрирующую камеру. Лазер выполнен с возможностью подсветки верхних слоёв атмосферы, приводящей к лазерно-индуцированной флюоресценции продуктов, образующихся при проведении ядерных взрывов. Фокальная плоскость регистрирующей камеры выполнена в виде площадного сенсора. Лазерный луч ориентирован в направлении съёмки. Технический результат заключается в обеспечении возможности проведения измерений в сумеречное и темное время суток, расширяя временные возможности обнаружения продуктов, образующихся при проведении ядерных взрывов. 2 ил.

Формула изобретения RU 2 787 305 C1

Спектрограф, предназначенный для осуществления фотографической регистрации спектра свечения неба, содержащий входной коллиматор, диспергирующий элемент и выходную регистрирующую камеру, отличающийся тем, что по направлению съемки установлен лазер, выполненный с возможностью подсветки верхних слоёв атмосферы, приводящей к лазерно-индуцированной флюоресценции продуктов, образующихся при проведении ядерных взрывов, а фокальная плоскость регистрирующей камеры выполнена в виде площадного сенсора, причем лазерный луч ориентирован в направлении съёмки.

Документы, цитированные в отчете о поиске Патент 2023 года RU2787305C1

US 2020217791 A1, 09.07.2020
US 9651533 B2, 16.05.2017
Железобетонный трубчатый щит 1960
  • Дзюбенко В.Т.
  • Лавров Н.С.
  • Жарков М.М.
  • Савельев В.Ф.
  • Чинакал Н.А.
SU134648A1
ГИПЕРСПЕКТРАЛЬНЫЙ 2D (ИЗОБРАЖАЮЩИЙ) СПЕКТРОФОТОМЕТР РАССЕЯННЫХ ИЛИ ВЫНУЖДЕННЫХ ИЗЛУЧЕНИЙ В ШИРОКОМ (ОПРЕДЕЛЕННОМ) СПЕКТРАЛЬНОМ ДИАПАЗОНЕ 2014
  • Мельников Геннадий Семенович
  • Самков Владимир Михайлович
RU2635841C2

RU 2 787 305 C1

Авторы

Шушлебин Алексей Сергеевич

Даты

2023-01-09Публикация

2021-12-17Подача