Изобретение относится к прокатному производству, в частности к способу производства мелющих шаров, применяемых в мельницах барабанного типа, используемых в горнорудной промышленности и на предприятиях по производству цемента.
Известен способ производства стальных мелющих шаров, включающий нагрев непрерывнолитой заготовки, прокатку на сортовом стане горячей прокатки круглых заготовок соответствующего размера, последующий их нагрев в индукционном устройстве, прокатку из них шаров на стане поперечно-винтовой прокатки при температуре 950-1050°C, подстуживание шаров перед закалкой, закалку и самоотпуск шаров в контейнерах, при этом квадратную непрерывнолитую заготовку изготавливают сечением (100-150)×(100-150) мм из стали со следующим соотношением компонентов, мас %: углерод 0,6-1,05; кремний 0,15-2,0; марганец 0,2-1,2; хром 0,03-1,5; медь 0,03-0,40; железо и неизбежные примеси остальное, а нагрев круглых заготовок производят в индукционном устройстве до температуры на выходе из индукторов 1070-1140°C, подстуживание шаров до температуры закалки 840-900°C осуществляют в подстуживающем барабане со скоростью его вращения в диапазоне 6,0-22,0 об/мин с выравниванием температуры шаров по сечению за счет вращения шаров в барабане в течение менее 2 мин, а закалку шаров производят в закалочном барабане со скоростью его вращения в диапазоне 0,4-2,5 об/мин проточной водой температурой 25-42°C до температуры шаров после закалки 125-160°C [Патент RU № 2596737, МПК C21D9/36, B21H1/14, C21D1/02, B23P15/00, C22C38/48, 2016].
Недостатком этого способа является то, что данный способ не позволяет получить шары пятой группы твердости со сквозной прокаливаемостью.
Наиболее близким к предлагаемому изобретению по технической сущности является способ производства мелящих шаров, включающий производство шаров с условным диаметром 80-100 мм, после прокатки шары подстуживают до температуры 740-800°С, закалку шаров производят в закалочной среде с выдержкой в течение от 3,0 до 4,0 мин, а последующий отпуск проводят при температуре 180-260°С и времени выдержки в течение от 180 до 320 мин, при этом после отпуска проводят самоотпуск с временем выдержки в течение от 12 до 48 часов. Способ включает производство шаров с условным диаметром 110-140 мм, после прокатки шары подстуживают до температуры 740-800°С, закалку шаров производят в закалочной среде с выдержкой в течение от 3,5 мин до 5,0 мин, а последующий отпуск проводят при температуре 180-260°С и времени выдержки от 180 до 320 мин, при этом после отпуска проводят самоотпуск с временем выдержки в течение от 12 до 48 часов [Патент RU № 2756671, МПК C21D9/36, C22С38/24, B21H1/14, 2021].
Недостатком данного способа является повышенная себестоимость производства стали в связи с наличием большего количества легирующих компонентов.
Технический результат предлагаемого технического решения заключается в разработке способа производства стальных мелющих шаров с условным диаметром от 30 до 40 мм, характеризующихся повышенной абразивной стойкостью.
Указанный технический результат достигается тем, что в способе производства мелющих шаров, включающем выплавку стали, прокатку шаров и их термообработку, согласно изобретению выплавляют сталь, при этом содержание углерода, кремния, марганца, фосфора, серы, хрома, никеля, меди, молибдена, ванадия, ниобия, азота в стали следующие, мас.%:
при этом, углеродный эквивалент стали составляет 0,77–1,13, далее осуществляют разливку стали в заготовки квадратного сечения, затем указанные заготовки перекатывают в заготовки круглого сечения, диаметр которых соответствует условному диаметру конечных шаров в диапазоне 30–40 мм, осуществляют нагрев заготовок круглого сечения до температуры 1010–1160 °С, производят поперечно-винтовую прокатку с температурой конца прокатки 950 – 1100 °С, выполняют подстуживание шаров до температуры 770–890 °С, затем осуществляют их закалку до температуры 100–150 °С, а далее шары подвергают самоотпуску в течение не менее 12 часов.
Твердость мелющих шаров на поверхности составляет 61–70 HRC, на глубине 0,5 радиуса шара 55–70 HRC, а объемная твердость составляет 55–65 HRC.
На поверхности шара микроструктура состоит из мартенсита, а на глубине 0,5 радиуса шара из 95–100 % мартенсита и не более 5,0 % остаточного аустенита.
Размер действительного зерна аустенита шара перед закалкой составляет 6 – 8 баллов.
Сущность предложенного способа заключается в следующем.
Данный химический состав и получаемая после заявляемой термической обработки структура позволяют обеспечить снижение расходного коэффициента у клиентов при переработке стальных мелющих шаров в мельницах.
При содержании углерода менее 0,6 % снижается твердость шаров ниже допустимых значений.
При содержании углерода более 0,8% повышается хрупкость шаров и после проведения термической обработки возможно образование трещин.
Кремний является раскислителем стали, а также способствует повышению ее прочности и упругости после финальной термической обработки. При содержании кремния в количестве менее 0,1% сталь будет не достаточно раскисленной. Содержание кремния более 0,4% в сочетании с высоким содержанием углерода приводит к повышению хрупкости шаров.
Марганец выступает в качестве раскислителя стали и элемента, связывающего серу. Также марганец повышает прочность стали после финальной термической обработки, увеличивает прокаливаемость. Содержание марганца менее 0,6 % в стали, приводит к снижению прочности и к недостаточной прокаливаемости шаров. Содержание марганца более 1,4 %, при высоком содержании углерода и кремния, может привести к снижению пластичности стали.
Сера и фосфор являются вредными примесями, ухудшающими качество стали, поэтому содержание данных химических элементов следует ограничивать значением менее 0,04 % каждого.
Хром в количестве 0,1–0,4 % обеспечивает твердость и прочность стали, обеспечивает коррозионную стойкость шара и устойчивость к абразивному износу. Дальнейшее увеличение содержания хрома приводит к удорожанию стали.
Массовые доли меди, молибдена, ванадия, ниобия в установленных диапазонах позволяют обеспечивать необходимую твердость шаров. Их повышение выше заявленных значений приведет к образованию неметаллических включений и экономически нецелесообразно.
Азот присутствует в стали в виде хрупких неметаллических включений и ухудшает механические свойства мелющих шаров. Максимальное содержание азота в стали допустимо в количестве не более 0,015 %.
В металле должны отсутствовать дефекты макроструктуры, количество и размер неметаллических включений должен быть минимальным, не должно быть сетки по границам зерен, требуется минимизировать количество вредных примесей.
Получение углеродного эквивалента в заявляемом диапазоне позволяет получать шары без образования трещин на поверхности и обеспечивает повышенную абразивную стойкость.
При нагреве заготовки выше температуры 1160°С наблюдается рост зерна аустенита, что приводит к снижению ударостойкости шара и повышению абразивного износа. При нагреве заготовки ниже температуры 1010°С увеличиваются нагрузки на прокатные валки, что приводит к их преждевременному износу, необходимости частой настройки, а также риску получения сколов реборд.
При температуре конца прокатки выше 1100°С затрудняется захват заготовки прокатными валками, шары после прокатки имеют овальную форму, выходящую за пределы допустимых значений по ГОСТ 7524.
При температуре конца прокатки ниже 950°С увеличиваются нагрузки на прокатные валки, что приводит к их преждевременному износу, необходимости частой настройки а также риску получения сколов реборд.
При начале закалки с температуры ниже 770°С, закалка происходит из двухфазной области, не позволяющая получить целевую микроструктуру и необходимую твердость на поверхности шара согласно ГОСТ 7524. При начале закалки при температуре выше 890 °С значительно возрастают внутренние напряжения после закалки, что может привести к появлению трещин на поверхности шаров.
При повышении температуры конца закалки выше 150°С есть риск не достижения требуемой твердости и необходимой структуры металла. При температуре конца закалки ниже 100°С среднемассовая температура мелющих шаров недостаточна для снятия внутренних напряжений, что может спровоцировать появление трещин.
Самоотпуск является важной составляющей технологии термоупрочнения шаров. На стадии самоотпуска происходит завершение структурообразования в шарах, а также релаксация напряжений, возникающих в изделиях в процессе закалки. Для достижения требуемых свойств шаров их самоотпуск должен проходить в течение не менее 12 час.
Размер действительного зерна аустенита должен составлять 6–8 баллов – это обеспечивает высокую абразивную и ударную стойкость шаров.
В металле должны отсутствовать дефекты макроструктуры, количество и размер неметаллических включений должен быть минимальным, не должно быть сетки по границам зерен, требуется минимизировать количество вредных примесей.
Пример реализации.
В таблице 1 приведены варианты химических составов стали. В таблице 2 приведены контролируемые характеристики технологических параметров.
Согласно представленным данным в таблицах 1 и 2 при соблюдении указанных режимов термической обработки, мелющие шары обладают требуемыми характеристиками: микроструктурой, твердостью, размерами неметаллических включений, мелкозернистостью, а, следовательно, хорошо поддаются термической обработке и обладают низким абразивным износом.
Таблица 1
Химический состав сталей*
* - содержание меди, молибдена, ванадия, ниобия и азота составляло 0,014 %.
Таблица 2
Контролируемые параметры
название | год | авторы | номер документа |
---|---|---|---|
Способ производства мелющих шаров (варианты) | 2022 |
|
RU2790842C1 |
Способ производства мелющих шаров | 2022 |
|
RU2801912C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ МЕЛЮЩИХ ШАРОВ | 2015 |
|
RU2596737C1 |
СПОСОБ ПРОИЗВОДСТВА МЕЛЮЩИХ ШАРОВ (ВАРИАНТЫ) | 2020 |
|
RU2756671C1 |
Способ производства листового проката толщиной 8-50 мм из хладостойкой высокопрочной высокотвердой стали | 2023 |
|
RU2808637C1 |
СПОСОБ ПРИЗВОДСТВА ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ ТОЛСТОЛИСТОВОЙ СТАЛИ | 2013 |
|
RU2532768C1 |
Способ производства хладостойкого листового стального проката | 2022 |
|
RU2792549C1 |
Способ производства мелющих шаров | 2020 |
|
RU2745922C1 |
Способ изготовления металлоизделий шарообразной формы | 2021 |
|
RU2779559C1 |
СПОСОБ ПРОИЗВОДСТВА МЕЛЮЩИХ ШАРОВ ИЗ СТАЛИ (ВАРИАНТЫ) | 2022 |
|
RU2791495C1 |
Изобретение относится к способу производства мелющих шаров. Осуществляют разливку стали в заготовки квадратного сечения, затем указанные заготовки перекатывают в заготовки круглого сечения, диаметр которых соответствует условному диаметру конечных шаров в диапазоне 30–40 мм. Осуществляют нагрев заготовок круглого сечения до температуры 1010–1160°С. Производят поперечно-винтовую прокатку с температурой конца прокатки 950–1100°С. Выполняют подстуживание шаров до температуры 770–890°С. Затем осуществляют их закалку до температуры 100–150°С, а далее шары подвергают самоотпуску в течение не менее 12 часов. В результате повышается абразивная стойкость шаров. 3 з.п. ф-лы, 2 табл., 1 пр.
1. Способ производства мелющих шаров, включающий выплавку стали, прокатку шаров и их термообработку, отличающийся тем, что выплавляют сталь, при этом содержание углерода, кремния, марганца, фосфора, серы, хрома, никеля, меди, молибдена, ванадия, ниобия, азота в стали следующее, мас.%:
при этом углеродный эквивалент стали составляет 0,77–1,13, далее осуществляют разливку стали в заготовки квадратного сечения, затем указанные заготовки перекатывают в заготовки круглого сечения, диаметр которых соответствует условному диаметру конечных шаров в диапазоне 30–40 мм, осуществляют нагрев заготовок круглого сечения до температуры 1010–1160°С, производят поперечно-винтовую прокатку с температурой конца прокатки 950–1100°С, выполняют подстуживание шаров до температуры 770–890°С, затем осуществляют их закалку до температуры 100–150°С, а далее шары подвергают самоотпуску в течение не менее 12 часов.
2. Способ по п. 1, отличающийся тем, что твердость мелющих шаров на поверхности составляет 61–70 HRC, на глубине 0,5 радиуса шара 55–70 HRC, а объемная твердость составляет 55–65 HRC.
3. Способ по п. 1, отличающийся тем, что на поверхности шара микроструктура состоит из мартенсита, а на глубине 0,5 радиуса шара из 95–100 % мартенсита и не более 5,0 % остаточного аустенита.
4. Способ по п. 1, отличающийся тем, что размер действительного зерна аустенита шара перед закалкой составляет 6–8 баллов.
СПОСОБ ПРОИЗВОДСТВА МЕЛЮЩИХ ШАРОВ (ВАРИАНТЫ) | 2020 |
|
RU2756671C1 |
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНЫХ МЕЛЮЩИХ ШАРОВ | 2015 |
|
RU2596737C1 |
МЕЛЮЩЕЕ ТЕЛО ДЛЯ ШАРОВЫХ МЕЛЬНИЦ | 2002 |
|
RU2221058C2 |
Втулка велосипедного колеса со свободным ходом | 1924 |
|
SU2651A1 |
Авторы
Даты
2023-02-28—Публикация
2022-02-25—Подача