НОВЫЙ ВАРИАНТ ФЕРРОХЕЛАТАЗЫ И СПОСОБ ПОЛУЧЕНИЯ L-ТРИПТОФАНА С ЕГО ПРИМЕНЕНИЕМ Российский патент 2023 года по МПК C12N9/88 C12N15/70 C12P13/22 

Описание патента на изобретение RU2791193C1

Настоящее раскрытие относится к новому варианту феррохелатазы, штамму Escherichia coli, содержащему данный вариант, и к способу продуцирования L-триптофана с использованием данного штамма.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Проводятся разные исследования для разработки высокоэффективных микроорганизмов и технологий способов ферментации для производства L-аминокислот и других полезных веществ. Например, главным образом, используется специфичный подход в отношении целевого вещества, при котором увеличивается экспрессия гена, кодирующего фермент, участвующий в биосинтезе L-триптофана, или при котором удаляются гены, не являющиеся необходимыми для биосинтеза (US 8945907 В2).

Однако все еще необходимо проводить исследования для эффективного увеличения способности к продуцированию L-триптофана, так как возрастает спрос на L-триптофан.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Техническая проблема

Авторы настоящего изобретения разработали новый вариант феррохелатазы для увеличения продукции L-триптофана, штамм Escherichia coli, содержащий данный вариант, и способ продуцирования L-триптофана с использованием данного штамма, посредством этого осуществляя настоящее раскрытие.

Техническое решение

Целью настоящего раскрытия является предложение варианта феррохелатазы, состоящего из аминокислотной последовательности, представленной SEQ ID NO: 1, в которой глицин, который представляет собой аминокислоту, соответствующую положению 137 в аминокислотной последовательности SEQ ID NO: 3, заменен аспарагиновой кислотой.

Другой целью настоящего раскрытия является предложение полинуклеотида, кодирующего вариант по настоящему раскрытию.

Еще одной другой целью настоящего раскрытия является предложение штамма Escherichia coli, который содержит вариант по настоящему раскрытию, или полинуклеотид, кодирующий данный вариант, и имеет способность к продуцированию L-триптофана.

Еще одной другой целью настоящего раскрытия является предложение способа продуцирования L-триптофана, который включает культивирование штамма Escherichia coli, который содержит вариант по настоящему раскрытию, или полинуклеотид, кодирующий данный вариант, и имеет способность к продуцированию L-триптофана в среде.

Полезные эффекты

В случае культивирования штамма Escherichia coli, содержащего вариант феррохелатазы по настоящему раскрытию, возможно продуцировать L-триптофан с более высоким выходом по сравнению со случаем существующих микроорганизмов, имеющих немодифицированные полипептиды.

Наилучший способ

Настоящее раскрытие будет подробно описано следующим образом. Тем временем, каждое из описаний и воплощений, раскрытых в настоящем раскрытии, можно применять к другим описаниям и воплощениям. Другими словами, все комбинации разных элементов, раскрытых в настоящем раскрытии, принадлежат к объему настоящего раскрытия. Кроме того, нельзя считать, что объем настоящего раскрытия ограничивается конкретным описанием, приведенным ниже. Кроме того, во всем настоящем описании изобретения приводятся ссылки целого ряда статей и патентных документов, и указываются их цитирования. Вся полнота содержания, раскрытого в процитированных статьях и патентных документах, включается в настоящее описание изобретения посредством ссылки для того, чтобы более ясно описать уровень технической области, к которой принадлежит настоящее изобретение, и содержание настоящего изобретения.

Согласно одному аспекту настоящего раскрытия предложен вариант, состоящий из аминокислотной последовательности, представленной SEQ ID NO: 1, в котором глицин, который представляет собой аминокислоту, соответствующую положению 137 в аминокислотной последовательности SEQ ID NO: 3, заменен аспарагиновой кислотой.

Вариант по настоящему раскрытию может иметь, содержать или по существу состоять из аминокислотной последовательности, представленной SEQ ID NO: 1.

В варианте по настоящему раскрытию аминокислота, соответствующая положению 137 на основе аминокислотной последовательности SEQ ID NO: 3 в аминокислотной последовательности, представленной SEQ ID NO: 1, представляет собой аспарагиновую кислоту и может содержать аминокислотную последовательность, имеющую по меньшей мере 70%-ную, 75%-ную, 80%-ную, 85%-ную, 90%-ную, 95%-ную, 96%-ную, 97%-ную, 98%-ную, 99%-ную, 99,5%-ную, 99,7%-ную или 99,9%-ную или большую гомологию или идентичность с аминокислотной последовательностью, представленной SEQ ID NO: 1. Очевидно то, что варианты, имеющие аминокислотные последовательности, в которых некоторые последовательности удалены, модифицированы, заменены, консервативно заменены или добавлены, также включаются в объем настоящего раскрытия, при условии, что аминокислотные последовательности имеют такую гомологию или идентичность и демонстрируют эффективность, соответствующую эффективности варианта по настоящему раскрытию.

Его примеры включают варианты, имеющие присоединение или делецию последовательности, которые не изменяют функцию варианта по настоящему раскрытию, на N-конце, С-конце аминокислотной последовательности и/или внутри данной аминокислотной последовательности, встречающуюся в природе мутацию, молчащую мутацию или консервативную замену.

Термин «консервативная замена» означает замену одной аминокислоты другой аминокислотой, имеющей аналогичные структурные и/или химические свойства. Такая аминокислотная замена обычно может происходить на основе сходства в полярности, заряде, растворимости, гидрофобности, гидрофильности и/или амфипатической природы остатков. Обычно консервативная замена может слегка влиять или не влияет на активность белков или полипептидов.

В настоящем раскрытии термин «вариант» относится к полипептиду, который имеет отличную аминокислотную последовательность от аминокислотной последовательности данного варианта перед изменением посредством консервативной замены и/или модификации одной или более чем одной аминокислоты, но сохраняет функции или свойства. Такой вариант обычно может быть идентифицирован посредством модифицирования одной или более чем одной аминокислоты аминокислотной последовательности данного полипептида и осуществления оценки свойств данного модифицированного полипептида. Другими словами, способность данного варианта может быть увеличена, оставлена неизменной или снижена по сравнению со способностью полипептида перед изменением. Некоторые варианты могут включать варианты, в которых одна или более чем одна часть, такая как N-концевая лидерная последовательность или транс мембранный домен, были удалены. Другие варианты могут включать варианты, в которых была удалена часть N- и/или С-конца от зрелого белка. Термин «вариант» можно использовать взаимозаменяемо с такими терминами, как модификация, модифицированный полипептид, модифицированный белок, мутант, мутеин и дивергент, и не ограничивается ими, при условии, что он представляет собой термин, используемый со значением изменения. В целях настоящего раскрытия данный вариант может представлять собой полипептид, содержащий аминокислотную последовательность, представленную SEQ ID NO: 1, в которой глицин, который представляет собой аминокислоту, соответствующую положению 137 в аминокислотной последовательности SEQ ID NO: 3, заменен аспарагиновой кислотой.

Данный вариант может содержать делеции или присоединения аминокислот, которые имеют минимальное влияние на свойства и вторичную структуру полипептида. Например, с N-концом данного варианта может быть конъюгирована сигнальная (или лидерная) последовательность, которая котрансляционно или посттрансляционно участвует в транслокации белка. Данный вариант может быть конъюгирован с другими последовательностями или линкерами таким образом, чтобы его идентифицировать, очистить или синтезировать.

В настоящем раскрытии термин «гомология» или «идентичность» означает степень сходства между двумя данными аминокислотными последовательностями или последовательностями оснований и может быть выражена в виде процентной доли. Термины «гомология» и «идентичность» часто можно использовать взаимозаменяемо.

Гомология или идентичность последовательности консервативного полинуклеотида или полипептида определяется стандартными алгоритмами выравнивания, и может совместно использоваться штраф за пропуск по умолчанию, установленный применяемой программой. По существу гомологичные или идентичные последовательности обычно способны к гибридизации со всей или с частью последовательности при условиях умеренной или высокой жесткости. Очевидно, что гибридизация также включает гибридизацию полинуклеотида с полинуклеотидом, содержащим общий кодон или рассматриваемый кодон в состоянии вырожденности.

Имеют ли любые две последовательности полинуклеотида или полипептида гомологию, сходство или идентичность, можно определять с использованием известных компьютерных алгоритмов, таких как программа «FASTA», например, с использованием параметров по умолчанию как в Pearson et al., (1988) Proc. Natl. Acad. Sci. USA 85:2444. В качестве альтернативы, гомология, сходство или идентичность могут быть определены с использованием алгоритма Нидлмана и Вунша (Needleman and Wunsch, 1970, J. Mol. Biol. 48:443-453), как осуществляется в программе Нидлмана пакета EMBOSS (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16:276-277) (версия 5.0.0 или более поздняя) (включая программный пакет GCG (Devereux, J., et al., Nucleic Acids Research 12:387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S. F., et al., JMOLEC BIOL 215:403 (1990); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994; и CARILLO et al. (1988) SIAM J Applied Math 48:1073). Например, для определения гомологии, сходства или идентичности можно использовать BLAST Национального центра биотехнологической информации или ClustalW.

Гомологию, сходство или идентичность полинуклеотидов или полипептидов можно определять посредством сравнения информации по последовательности с использованием, например, компьютерной программы GAP, как, например, Needleman et al. (1970), J Mol Biol. 48:443, как анонсировано, например, в Smith and Waterman, Adv. Appl. Math (1981) 2:482. В заключение, результат программы GAP может быть определен как значение, полученное делением числа аналогичных выровненных символов (а именно: нуклеотидов или аминокислот) на общее число символов в более короткой из двух последовательностей. Параметры по умолчанию программы GAP могут включать (1) матрицу двоичных сравнений (включающую значения 1 для идентичности и 0 для неидентичности) и матрицу взвешенных сравнений Gribskov et al., (1986) Nucl. Acids Res. 14:6745 (или матрицу замен EDNAFULL (EMBOSS версии NCBI NUC4.4)), как раскрыто в Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp.353-358 (1979); (2) штраф 3,0 для каждого пропуска и дополнительный штраф 0,10 для каждого символа в каждом пропуске (или штраф 10 за открытие пропуска, штраф 0,5 за удлинение пропуска); и (3) отсутствие штрафа за концевые пропуски.

В качестве примера по настоящему раскрытию, вариант по настоящему раскрытию может демонстрировать активность феррохелатазы. Кроме того, вариант по настоящему раскрытию может демонстрировать активность таким образом, чтобы иметь повышенную способность к образованию L-триптофана по сравнению с полипептидом дикого типа, демонстрирующим активность феррохелатазы. Термин «феррохелатаза» в том виде, в котором он здесь используется, относится к полипептиду, который катализирует образование протогема. В частности, термин «феррохелатаза» по настоящему раскрытию можно использовать взаимозаменяемо с терминами «протопорфиринферрохелатаза» или «FECH». В настоящем раскрытии последовательность феррохелатазы может быть получена из GenBank NCBI известной базы данных. В частности, феррохелатаза может представлять собой полипептид, имеющий активность феррохелатазы, кодируемый геном hemH, но не ограничивается им.

В настоящем раскрытии термин «соответствующий» относится к аминокислотным остаткам в положениях, перечисленных в полипептиде, или к аминокислотным остаткам, которые являются аналогичными, идентичными или гомологичными остаткам, перечисленным в данном полипептиде. Идентификация аминокислоты в соответствующем положении может определяться специфической аминокислотой в последовательности, которая относится к специфической последовательности. Термин «соответствующая область» в том виде, в котором он здесь используется, обычно относится к аналогичному или соответствующему положению в родственном белке или эталонном белке.

Например, произвольная аминокислотная последовательность выравнивается с SEQ ID NO: 3, и, на основе этого, каждый аминокислотный остаток данной аминокислотной последовательности может быть пронумерован по отношению к аминокислотному остатку в SEQ ID NO: 3 и числовому положению соответствующего аминокислотного остатка. Например, алгоритм выравнивания последовательности, как описано в настоящем раскрытии, может определять положение аминокислоты или положение, в котором происходит модификация, такая как замена, вставка или делеция, посредством сравнения с положением в запрашиваемой последовательности (также именуемой «эталонная последовательность»).

Для таких выравниваний, например, можно использовать алгоритм Нидлмана Вунша (Needleman and Wunsch, 1970, J. Mol. Biol. 48:443-453), программу Нидлмана пакета EMBOSS (EMBOSS: The European Molecular Biology Open Software Suite, Rice et at, 2000, Trends Genet. 16:276-277) и тому подобные, но программа и алгоритм не ограничиваются ими, и подходящим образом можно использовать программу выравнивания последовательностей, алгоритм попарного сравнения последовательностей и тому подобное, известные в данной области.

Другим аспектом настоящего раскрытия является предложение полинуклеотида, кодирующего вариант по настоящему раскрытию.

В настоящем раскрытии термин «полинуклеотид» представляет собой нить ДНК или РНК, имеющую определенную или большую длину, в качестве полимера нуклеотидов, в котором нуклеотидные мономеры соединяются в длинную цепь ковалентными связями, и, более конкретно, означает фрагмент полинуклеотида, кодирующий данный вариант.

Полинуклеотид, кодирующий вариант по настоящему раскрытию, может содержать последовательность оснований, кодирующую аминокислотную последовательность, представленную SEQ ID NO: 1. В качестве примера по настоящему раскрытию полинуклеотид по настоящему раскрытию может иметь или содержать последовательность SEQ ID NO: 2. Полинуклеотид по настоящему раскрытию может состоять или по существу состоит из последовательности SEQ ID NO: 2.

В полинуклеотиде по настоящему раскрытию могут быть сделаны разные модификации в кодирующей области при условии, что аминокислотная последовательность варианта по настоящему раскрытию не изменяется при рассмотрении вырожденности предпочтительных кодонов в организмах, которые предназначены для экспрессии варианта по настоящему раскрытию. В частности, полинуклеотид по настоящему раскрытию имеет или содержит последовательность оснований, имеющую 70%-ную или большую, 75%-ную или большую, 80%-ную или большую, 85%-ную или большую, 90%-ную или большую, 95%-ную или большую, 96%-ную или большую, 97%-ную или большую, 98%-ную или большую, но менее, чем 100%-ную гомологию или идентичность с последовательностью SEQ ID NO: 2 или может состоять или по существу состоит из последовательности оснований, имеющей 70%-ную или большую, 75%-ную или большую, 80%-ную или большую, 85%-ную или большую, 90%-ную или большую, 95%-ную или большую, 96%-ную или большую, 97%-ную или большую, 98%-ную или большую, но менее, чем 100%-ную гомологию или идентичность с последовательностью SEQ ID NO: 2, но не ограничиваясь ей. Здесь в последовательности, имеющей гомологию или идентичность, кодон, кодирующий аминокислоту, соответствующую положению 137 в SEQ ID NO: 1, может представлять собой один из кодонов, кодирующих аспарагиновую кислоту.

Полинуклеотид по настоящему раскрытию может содержать зонд, который может быть получен из последовательности известного гена, например, последовательности без ограничения при условии, что она представляет собой последовательность, которая может гибридизоваться с комплементарной последовательностью всей или части последовательности полинуклеотида по настоящему раскрытию при жестких условиях. «Жесткие условия» означают условия, которые обеспечивают специфичную гибридизацию между полинуклеотидами. Данные условия конкретно описываются в документах (см. J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York, 9.50-9.51, 11.7-11.8). Их примеры включают условия, при которых полинуклеотиды, имеющие более высокую гомологию или идентичность, а именно: полинуклеотиды, имеющие 70%-ную или большую, 75%-ную или большую, 80%-ную или большую, 85%-ную или большую, 90%-ную или большую, 95%-ную или большую, 96%-ную или большую, 97%-ную или большую, 98%-ную или большую, или 99%-ную или большую гомологию или идентичность, гибридизуются друг с другом, тогда как полинуклеотиды, имеющие меньшую гомологию или идентичность, не гибридизуются друг с другом, или условия, при которых промывка осуществляется один раз, в частности, от двух до трех раз при концентрации соли и температуре, эквивалентных 60°С, 1xSSC (раствор цитрата и хлорида натрия), 0,1% SDS (додецилсульфат натрия), в частности, при 60°С, 0,1xSSC, 0,1% SDS, более конкретно, при 68°С, 0,1xSSC, 0,1% SDS, которые представляют собой условия промывки для обычной гибридизации по Саузерну.

Для гибридизации требуется то, чтобы две нуклеиновые кислоты имели комплементарные последовательности, хотя и допускаются несоответствия между основаниями, в зависимости от жесткости гибридизации. Термин «комплементарный» используется для описания связи между нуклеотидными основаниями, способными к гибридизации друг с другом. Например, в отношении ДНК, аденин является комплементарным тимину, а цитозин является комплементарным гуанину.

Следовательно, полинуклеотид по настоящему раскрытию также может содержать по существу аналогичные последовательности нуклеиновой кислоты, а также фрагменты выделенной нуклеиновой кислоты, которые являются комплементарными всей последовательности.

В частности, полинуклеотид, имеющий гомологию или идентичность с полинуклеотидом по настоящему раскрытию, может быть выявлен с использованием условий гибридизации, включающих стадию гибридизации при значении Tm 55°С и вышеописанных условиях. Значение Tm может составлять 60°С, 63°С или 65°С, но не ограничивается ими, и может подходящим образом корректироваться специалистами в данной области согласно цели.

Подходящая жесткость для гибридизации полинуклеотида зависит от длины и степени комплементарности данного полинуклеотида, и переменные хорошо известны в данной области (например, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989).

Другим аспектом настоящего раскрытия является предложение вектора, содержащего полинуклеотид по настоящему раскрытию. Данный вектор может представлять собой экспрессионный вектор для осуществления экспрессии полинуклеотида в клетке-хозяине, но не ограничивается им.

Вектор по настоящему раскрытию может включать ДНК-конструкцию, содержащую последовательность полинуклеотида, кодирующую интересующий полипептид, связанный функциональным образом с подходящей регуляторной областью экспрессии (или последовательностью контроля экспрессии) таким образом, что интересующий полипептид может экспрессироваться в подходящем хозяине. Регуляторная область экспрессии может содержать промотор, способный инициировать транскрипцию, любую последовательность оператора для осуществления контроля транскрипции, последовательность, кодирующую подходящий сайт связывания рибосомы с мРНК, и последовательность, контролирующую терминацию транскрипции и трансляции. Данный вектор может трансформироваться в подходящую клетку-хозяина и затем реплицироваться или функционировать независимо от генома хозяина, или может сам интегрироваться в геном.

Вектор, используемый в настоящем раскрытии, конкретно не ограничивается, но можно использовать любой вектор, известный в данной области. Примеры обычно используемых векторов включают природные или рекомбинантные плазмиды, космиды, вирусы и бактериофаги. Например, в качестве фагового вектора или космидного вектора можно использовать pWE15, М13, MBL3, MBL4, ГХП, ASHII, АРП, t10, t11, Charon4A, Charon21A и тому подобные, и в качестве плазмидного вектора можно использовать систему pDZ, систему pBR, систему pUC, систему pBluescript II, систему pGEM, систему pTZ, систему pCL, систему рЕТ и тому подобные. В частности, можно использовать векторы pDZ, pDC, pDCM2, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118 и pCC1BAC, и тому подобные.

Например, полинуклеотид, кодирующий интересующий полипептид, можно вставлять в хромосому посредством вектора для внутриклеточной хромосомной вставки. Вставку данного полинуклеотида в хромосому можно осуществлять любым способом, известным в данной области, например, гомологичной рекомбинацией, но не ограничивается им. Данный вектор может дополнительно содержать селективный маркер для подтверждения вставки в хромосому. Данный селективный маркер служит для отбора клеток, трансформированных векторами, то есть, для подтверждения вставки интересующей молекулы нуклеиновой кислоты, и можно использовать маркеры, которые придают селектируемые фенотипы, такие как устойчивость к ядам, ауксотрофия, устойчивость к цитотоксическим агентам или экспрессия поверхностных полипептидов. В среде при обработке селективным агентом выживают или демонстрируют другие фенотипические признаки только клетки, экспрессирующие селективный маркер, и, таким образом, могут быть отобраны трансформированные клетки.

В настоящем раскрытии термин «трансформация» означает то, что вектор, содержащий полинуклеотид, кодирующий целевой полипептид, вводится в клетку-хозяина или микроорганизм таким образом, что полипептид, кодируемый данным полинуклеотидом, может экспрессироваться в клетке-хозяине. Трансформированный полинуклеотид может локализоваться посредством вставки в хромосому клетки-хозяина или локализоваться вне хромосомы, при условии, что он может экспрессироваться в данной клетке-хозяине. Данный полинуклеотид содержит ДНК и/или РНК, кодирующую интересующий полипептид. Данный полинуклеотид может быть вставлен в любой форме, при условии, что он может быть введен в клетку-хозяина и может экспрессироваться. Например, данный полинуклеотид может быть введен в клетку-хозяина в виде экспрессионной кассеты, которая представляет собой генетическую конструкцию, содержащую все элементы, требующиеся для автономной экспрессии. Данная экспрессионная кассета обычно может содержать промотор, связанный функциональным образом с полинуклеотидом, сигнал терминации транскрипции, сайт связывания рибосомы и сигнал терминации трансляции. Данная экспрессионная кассета может находиться в виде экспрессионного вектора, способного к автономной репликации. Полинуклеотид может быть введен в клетку-хозяина сам по себе и связан функциональным образом с последовательностью, требующейся для экспрессии в клетке-хозяине, но не ограничиваясь ей.

В приведенном выше термин «связанный функциональным образом» означает то, что последовательность полинуклеотида функционально связана с последовательностью промотора, которая инициирует и опосредует транскрипцию полинуклеотида, кодирующего интересующий вариант по настоящему раскрытию.

Еще одним другим аспектом настоящего раскрытия является предложение штамма Escherichia coli, который содержит вариант по настоящему раскрытию или полинуклеотид по настоящему раскрытию.

Штамм по настоящему раскрытию может содержать модифицированный полипептид по настоящему раскрытию, полинуклеотид, кодирующий данный полипептид, или вектор, содержащий полинуклеотид по настоящему раскрытию.

В настоящем раскрытии «штамм (или микроорганизм)» включает все микроорганизмы дикого типа или естественно или искусственно генетически модифицированные микроорганизмы, и он может представлять собой микроорганизм, в котором ослаблен или усилен специфический механизм из-за вставки внешнего гена или усиления активности, или инактивации эндогенного гена, и он может представлять собой микроорганизм, содержащий генетическую модификацию для продукции интересующего полипептида, белка или продукта.

Штамм по настоящему раскрытию может представлять собой штамм, содержащий любой один или более чем один вариант по настоящему раскрытию, полинуклеотид по настоящему раскрытию или вектор, содержащий полинуклеотид по настоящему раскрытию; штамм, модифицированный для экспрессии варианта по настоящему раскрытию или полинуклеотида по настоящему раскрытию; штамм (например, рекомбинантный штамм), экспрессирующий вариант по настоящему раскрытию или полинуклеотид по настоящему раскрытию; или штамм (например, рекомбинантный штамм), демонстрирующий активность варианта по настоящему раскрытию, но не ограничивается ими.

Штамм по настоящему раскрытию может представлять собой штамм, имеющий способность к продуцированию L-триптофана.

Штамм по настоящему раскрытию может представлять собой микроорганизм, имеющий в природе феррохелатазу или способность к продуцированию L-триптофана, или микроорганизм, в котором вариант по настоящему раскрытию или полинуклеотид, кодирующий данный вариант (или вектор, содержащий данный полинуклеотид), вводится в родительский штамм, который не имеет феррохелатазы или способности к продуцированию L-триптофана, и/или в котором способность к продуцированию L-триптофана придается родительскому штамму, но не ограничивается им.

Например, штамм по настоящему раскрытию представляет собой клетку или микроорганизм, который трансформирован вектором, содержащим полинуклеотид по настоящему раскрытию, или полинуклеотидом, кодирующим вариант по настоящему раскрытию, и экспрессирует вариант по настоящему раскрытию. В целях настоящего раскрытия штамм по настоящему раскрытию может включать все микроорганизмы, которые содержат вариант по настоящему раскрытию и могут продуцировать L-триптофан. Например, штамм по настоящему раскрытию может представлять собой рекомбинантный штамм, в котором полинуклеотид, кодирующий вариант по настоящему раскрытию, вводится в природный микроорганизм дикого типа или микроорганизм, продуцирующий L-триптофан, для того, чтобы, таким образом, экспрессировать вариант феррохелатазы и иметь повышенную способность к продуцированию L-триптофана. Рекомбинантный штамм, имеющий повышенную способность к продуцированию L-аминокислоты, может представлять собой микроорганизм, имеющий повышенную способность к продуцированию L-триптофана по сравнению с природным микроорганизмом дикого типа или микроорганизмом, не модифицированным феррохелатазой (а именно: микроорганизмом, экспрессирующим феррохелатазу дикого типа (SEQ ID NO: 3), или микроорганизмом, который не экспрессирует модифицированный белок (SEQ ID NO: 1)), но не ограничивается им. Например, штамм по настоящему раскрытию, имеющий повышенную способность к продуцированию L-триптофана, может представлять собой микроорганизм, имеющий повышенную способность к продуцированию L-триптофана по сравнению с Escherichia coli, которая содержит полипептид SEQ ID NO: 3 или полинуклеотид, кодирующий данный полипептид, но не ограничивается им. В качестве примера, микроорганизм, не модифицированный феррохелатазой, который представляет собой целевой штамм для сравнения увеличения способности к продуцированию L-триптофана, может представлять собой штамм CJ600 (КССМ10812Р, KR 10-0792095), но не ограничивается им.

Например, рекомбинантный штамм, имеющий повышенную способность к продуцированию, может иметь способность к продуцированию L-триптофана, повышенную примерно на 1% или более, примерно на 2,5% или более, примерно на 5% или более, примерно на 6% или более, примерно на 7% или более, примерно на 8% или более, примерно на 9% или более, примерно на 10% или более, примерно на 11% или более, примерно на 11,1% или более (верхняя граница конкретно не ограничивается и может составлять, например, примерно 200% или менее, примерно 150% или менее, примерно 100% или менее, примерно 50% или менее, примерно 45% или менее, примерно 40% или менее, примерно 35% или менее, примерно 30% или менее, примерно 25% или менее, или примерно 12% или менее) по сравнению со способностью к продуцированию L-триптофана родительского штамма перед изменением или с немодифицированным микроорганизмом, но повышенное значение не ограничивается им, при условии, что способность к продуцированию имеет повышенное значение плюс значения по сравнению со способностью к продуцированию родительского штамма перед изменением или с немодифицированным микроорганизмом. В другом примере рекомбинантный штамм, имеющий повышенную способность к продуцированию, может иметь способность к продуцированию L-триптофана, увеличенную примерно в 1,01 раза или более, примерно в 1,02 раза или более, примерно в 1,03 раза или больше, примерно в 1,05 раза или более, примерно в 1,06 раза или более, примерно в 1,07 раза или более, примерно в 1,08 раза или более, примерно в 1,09 раза или более, примерно в 1,1 раза или более, или примерно в 1,11 раза или более (верхняя граница конкретно не ограничивается и может, например, быть примерно в 10 раз или менее, примерно в 5 раз или менее, примерно в 3 раза или менее, примерно в 2 раза или менее, или примерно в 1,5 раза или менее) по сравнению со способностью к продуцированию L-триптофана родительского штамма перед изменением или с немодифицированным микроорганизмом, но данный показатель увеличения не ограничивается ими. Термин «примерно» представляет собой интервал, включающий все из плюс/минус 0,5; плюс/минус 0,4; плюс/минус 0,3; плюс/минус 0,2; плюс/минус 0,1 и тому подобных, и включает все значения в интервале, равные или аналогичные значению после термина «примерно», но не ограничиваются ими.

В настоящем раскрытии «немодифицированный микроорганизм» не исключает штаммы, содержащие мутацию, которая может случаться у микроорганизмов в природе, и может представлять собой штамм дикого типа или сам природный штамм, или может представлять собой штамм перед изменением признака посредством генетической вариации из-за природных или искусственных факторов. Например, данный немодифицированный микроорганизм может представлять собой штамм, в который не вводится или еще не был введен вариант феррохелатазы, описанный в настоящем описании изобретения. Термин «немодифицированный микроорганизм» можно использовать взаимозаменяемо с фразами «штамм перед модификацией», «микроорганизм перед модификацией», «неизмененный штамм», «немодифицированный штамм», «неизмененный микроорганизм» или «эталонный микроорганизм».

В другом примере настоящего раскрытия микроорганизм по настоящему раскрытию может представлять собой Escherichia coli.

В настоящем раскрытии «ослабление» полипептида включает оба случая, где активность снижается по сравнению с эндогенной активностью или отсутствует. Термин «ослабление» можно использовать взаимозаменяемо с такими терминами, как инактивация, недостаточность, понижающая регуляция, снижение, уменьшение и аттенюация.

Ослабление также может включать случай, где активность самого полипептида снижается или устраняется по сравнению с активностью полипептида, которым исходно обладал микроорганизм, посредством изменения полинуклеотида, кодирующего данный полипептид, и тому подобного, случай, где общие уровень активности и/или концентрация (уровень экспрессии) полипептида в клетке ниже по сравнению с уровнем активности или концентрацией природного штамма посредством ингибирования экспрессии гена полинуклеотида, кодирующего полипептид, или ингибирования трансляции в полипептид, случай, где данный полинуклеотид совсем не экспрессируется, и/или случай, где активность полипептида не проявляется даже при экспрессии полинуклеотида. Термин «эндогенная активность» означает активность конкретного полипептида, которой исходно обладал родительский штамм перед изменением признака, или микроорганизм дикого типа, или немодифицированный микроорганизм при изменении признака генетической вариацией из-за природных или искусственных факторов. Фразу «эндогенная активность» можно использовать взаимозаменяемо с фразой «активность перед модификацией». Тот факт, что активность полипептида является «инактивированной, недостаточной, пониженной, подвергнувшейся понижающей регуляции, сниженной или аттенюированной» по сравнению с эндогенной активностью означает то, что активность полипептида снижается по сравнению с активностью конкретного полипептида, которой исходно обладал родительский штамм перед изменением признака или микроорганизм дикого типа, или немодифицированный микроорганизм.

Такое ослабление активности полипептида можно осуществлять любым способом, известным в данной области, но данный способ не ограничивается им, и ослабления можно достигать применением разных способов, хорошо известных в данной области (например, Nakashima N. et al., Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci. 2014; 15(2): 2773-2793, Sambrook et al., Molecular Cloning 2012, и тому подобные).

В частности, ослабление активности полипептида в настоящем раскрытии может представлять собой:

1) делецию всего или части гена, кодирующего полипептид;

2) модификацию регуляторной области экспрессии (или последовательности контроля экспрессии) для уменьшения экспрессии гена, кодирующего полипептид;

3) модификацию аминокислотной последовательности, составляющей полипептид, для устранения или ослабления активности полипептида (например, делеция/замена/присоединение одной или более чем одной аминокислоты в аминокислотной последовательности);

4) модификацию последовательности гена, кодирующей полипептид, для устранения или ослабления активности данного полипептида (например, делеция/замена/присоединение одного или более чем одного основания нуклеиновой кислоты в последовательности оснований нуклеиновой кислоты гена полипептида для кодирования полипептида, который был модифицирован для устранения или ослабления активности данного полипептида);

5) модификацию инициирующего кодона транскрипта гена, кодирующего полипептид, или последовательности оснований, кодирующей 5'-UTR (5'-нетранслируемая область) область;

6) введение антисмыслового олигонуклеотида (например, антисмысловой РНК), который комплементарно связывается с транскриптом гена, кодирующего полипептид;

7) добавление последовательности, комплементарной последовательности Шайна-Дальгарно, перед последовательностью Шайна-Дальгарно гена, кодирующего полипептид, для того, чтобы образовать вторичную структуру, к которой не может присоединяться рибосома;

8) добавление промотора, подлежащего транскрипции в противоположном направлении относительно 3'-конца открытой рамки считывания (ORF) последовательности гена, кодирующего полипептид (инженерия обратной транскрипции, RTE); или

9) комбинацию двух или более чем двух, выбранных из (1) - (8), но, в частности, не ограничивается ими.

Например:

1) Делецией части или всего гена, кодирующего полипептид, может быть удаление всего полинуклеотида, кодирующего интересующий эндогенный полипептид в хромосоме, замена полинуклеотидом, в котором некоторые нуклеотиды делетированы, или замена маркерным геном.

2) Модификацией регуляторной области экспрессии (или последовательности контроля экспрессии) может быть делеция, вставка, неконсервативная или консервативная замена, или появление изменения в регуляторной области экспрессии (или последовательности контроля экспрессии) из-за их комбинации, или замена последовательностью, демонстрирующей более слабую активность. Регуляторная область экспрессии содержит промотор, последовательность оператора, последовательность, кодирующую сайт связывания рибосомы, и последовательность, контролирующую терминацию транскрипции и трансляции, но не ограничивается ими.

5) Модификацией инициирующего кодона транскрипта гена, кодирующего полипептид, или последовательности оснований, кодирующей 5'-UTR область, может быть, например, замена последовательностью оснований, кодирующей другой инициирующий кодон, имеющий меньшую скорость экспрессии полипептида по сравнению с эндогенным инициирующим кодоном, но не ограничивается ей.

3) и 4) Модификацией аминокислотной последовательности или последовательности полинуклеотида может быть делеция, вставка или неконсервативная, или консервативная замена аминокислотной последовательности полипептида или последовательности полинуклеотида, кодирующей данный полипептид, или появление изменения в последовательности из-за их комбинации, или замена аминокислотной последовательностью или последовательностью полинуклеотида, модифицированной так, чтобы демонстрировать более слабую активность, или аминокислотной последовательностью, или последовательностью полинуклеотида, модифицированной так, чтобы быть неактивной, таким образом, что активность данного полипептида ослабевает, но не ограничивается ими. Например, экспрессия гена может ингибироваться или ослабевать посредством введения изменения в последовательность полинуклеотида и образования терминирующего кодона, но модификация не ограничивается ей.

6) Для введения антисмыслового олигонуклеотида (например, антисмысловой РНК), который комплементарно связывается с транскриптом гена, кодирующего полипептид, можно сделать ссылку на документы, например, Weintraub, Н. et al., Antisense-RNA as a molecular tool for genetic analysis, Reviews-Trends in Genetics, Vol.1(1) 1986.

7) Добавление последовательности, комплементарной последовательности Шайна-Дальгарно, перед последовательностью Шайна-Дальгарно гена, кодирующего полипептид, для того, чтобы образовать вторичную структуру, к которой не может присоединяться рибосома, для того, чтобы сделать невозможной трансляцию мРНК или для замедления скорости трансляции мРНК.

8) Добавление промотора, подлежащего транскрипции в противоположном направлении относительно 3'-конца открытой рамки считывания (ORF) последовательности гена, кодирующего полипептид (инженерия обратной транскрипции, RTE), может служить для ослабления активности посредством получения антисмыслового нуклеотида, комплементарного транскрипту гена, кодирующего полипептид.

В настоящем раскрытии термин «усиление» активности полипептида означает то, что активность полипептида увеличивается по сравнению с эндогенной активностью. Термин «усиление» можно использовать взаимозаменяемо с такими терминами, как активация, повышающая регуляция, сверхэкспрессия и увеличение. Здесь активация, усиление, повышающая регуляция, сверхэкспрессия и увеличение могут включать как демонстрирование активности, которой исходно не обладали, так и демонстрирование улучшенной активности по сравнению с эндогенной активностью или активностью перед модификацией. Термин «эндогенная активность» означает активность конкретного полипептида, которой исходно обладал родительский штамм перед изменением признака или немодифицированный микроорганизм при изменении признака посредством генетической вариации из-за природных или искусственных факторов. Это можно использовать взаимозаменяемо с «активностью перед модификацией». Тот факт, что активность полипептида «усиливается», «подвергается повышающей регуляции», «сверхэкспрессируется» или «увеличивается» по сравнению с эндогенной активностью означает то, что активность полипептида улучшается по сравнению с активностью и/или концентрацией (уровнем экспрессии) конкретного полипептида, которой исходно обладает родительский штамм перед изменением признака или немодифицированный микроорганизм.

Данное усиление может быть достигнуто посредством введения чужеродного полипептида или увеличения эндогенной активности и/или концентрации (уровня экспрессии) данного полипептида. Усиление активности полипептида может быть подтверждено увеличением степени активности и уровня экспрессии полипептида или количества продукта, продуцируемого из данного полипептида.

Для усиления активности полипептида можно применять разные способы, хорошо известные в данной области, и данный способ не ограничивается, при условии, что активность интересующего полипептида может быть усилена по сравнению с активностью микроорганизма до модификации. В частности, можно использовать генную инженерию и/или белковую инженерию, хорошо известные специалистам в данной области, которые представляют собой традиционные способы молекулярной биологии, но данный способ не ограничивается ими (например, Sitnicka et al., Functional Analysis of Genes. Advances in Cell Biology. 2010, Vol.2. 1-16; Sambrook et al., Molecular Cloning 2012; и тому подобные).

В частности, усиление активности полипептида по настоящему раскрытию может представлять собой:

1) увеличение числа внутриклеточных копий полинуклеотида, кодирующего полипептид;

2) замену регуляторной области экспрессии гена на хромосоме, кодирующей полипептид, последовательностью, демонстрирующей сильную активность;

3) модификацию инициирующего кодона транскрипта гена, кодирующего полипептид, или последовательности оснований, кодирующей 5'-UTR область;

4) модификацию аминокислотной последовательности полипептида для увеличения активности данного полипептида;

5) модификацию последовательности полинуклеотида, кодирующей полипептид, для усиления активности данного полипептида (например, модификацию последовательности полинуклеотида гена полипептида для кодирования полипептида, который был модифицирован для усиления активности данного полипептида);

6) введение чужеродного полипептида, демонстрирующего активность данного полипептида, или чужеродного полинуклеотида, кодирующего данный полипептид;

7) оптимизацию кодонов полинуклеотида, кодирующего полипептид;

8) анализ третичной структуры полипептида для отбора и модификации или химической модификации экспонированного сайта; или

9) комбинацию двух или более чем двух, выбранных из (1)-(8), но конкретно не ограничиваясь ими.

Более конкретно:

1) Увеличение числа внутриклеточных копий полинуклеотида, кодирующего полипептид, может быть достигнуто посредством введения в клетку-хозяина вектора, который может реплицироваться и функционировать независимо от хозяина, и с которым полинуклеотид, кодирующий данный полипептид, связан функциональным образом. В качестве альтернативы, увеличение может быть достигнуто введением одной копии или двух или более чем двух копий полинуклеотида, кодирующего данный полипептид, в хромосому клетки-хозяина. Введение в хромосому можно осуществлять введением вектора, способного вставлять полинуклеотид в хромосому клетки-хозяина, в клетку-хозяина, но не ограничивается им. Данный вектор является таким, как описано выше.

2) Замена регуляторной области экспрессии гена (или контрольной последовательности экспрессии) на хромосоме, кодирующей полипептид, последовательностью, демонстрирующей сильную активность, может представлять собой, например, делецию, вставку, неконсервативную или консервативную замену, или появление изменения в последовательности из-за их комбинации, или замену последовательностью, демонстрирующей более сильную активность, таким образом, что активность регуляторной области экспрессии дополнительно усиливается. Регуляторная область экспрессии конкретно не ограничивается ими, но может содержать промотор, последовательность оператора, последовательность, кодирующую сайт связывания рибосомы, последовательность, контролирующую терминацию транскрипции и трансляции и тому подобные. Например, замена может представлять собой замену исходного промотора сильным промотором, но не ограничивается ей.

Примеры известных сильных промоторов включают промоторы CJ1-CJ7 (US 7662943 В2), промотор lac, промотор trp, промотор trc, промотор tac, промотор PR фага лямбда, промотор PL, промотор tet, промотор gapA, промотор SPL7, промотор SPL13 (sm3) (US 10584338 В2), промотор 02 (US 10273491 В2), промотор tkt и промотор уссА, но не ограничиваются ими.

3) Модификация инициирующего кодона транскрипта гена, кодирующуего полипептид, или последовательности оснований, кодирующей область 5'-UTR, может представлять собой, например, замену последовательностью оснований, кодирующей другой инициирующий кодон, имеющий более высокую скорость экспрессии полипептида по сравнению с эндогенным инициирующим кодоном, но не ограничивается ей.

4) и 5) Модификация аминокислотной последовательности или последовательности полинуклеотида может представлять собой делецию, вставку, неконсервативную или консервативную замену аминокислотной последовательности полипептида или последовательности полинуклеотида, кодирующей данный полипептид, или появление изменения в данной последовательности из-за их комбинации или замены аминокислотной последовательностью или последовательностью полинуклеотида, модифицированной для демонстрации более сильной активности, или аминокислотной последовательностью или последовательностью полинуклеотида, модифицированной для того, чтобы быть более активной, таким образом, что активность данного полипептида усиливается, но не ограничивается ими. Данную замену можно конкретно осуществлять посредством вставки полинуклеотида в хромосому гомологичной рекомбинацией, но не ограничивается ей. Используемый здесь вектор может дополнительно содержать селективный маркер для подтверждения вставки в хромосому. Селективный маркер является таким, как описано выше.

6) Введение чужеродного полипептида, демонстрирующего активность полипептида, может представлять собой введение в клетку-хозяина чужеродного полинуклеотида, кодирующего полипептид, демонстрирующий такую же или аналогичную данному полипептиду активность. Данный чужеродный полинуклеотид не ограничивается по его происхождению или последовательности при условии, что он демонстрирует такую же или аналогичную данному полипептиду активность. Введение можно осуществлять посредством подходящего выбора способа трансформации, известного специалистам в данной области. Поскольку введенный полинуклеотид экспрессируется в клетке-хозяине, может продуцироваться полипептид и может увеличиваться его активность.

7) Оптимизация кодонов полинуклеотида, кодирующего полипептид, может представлять собой оптимизацию кодонов эндогенного полинуклеотида таким образом, чтобы увеличивать транскрипцию или трансляцию в клетке-хозяине, или оптимизацию кодонов чужеродного полинуклеотида таким образом, чтобы осуществлять оптимизированную транскрипцию и трансляцию в клетке-хозяине.

8) Анализ третичной структуры полипептида для выбора и модификации или химическая модификация экспонированного сайта могут осуществляться, например, для определения шаблонного белка-кандидата согласно степени сходства последовательности посредством сравнения информации по последовательности полипептида, подлежащего анализу, с хранилищем информации по последовательностям известных белков базы данных для подтверждения структуры на основе этого и для выбора и модификации или химической модификации экспонированной части, подлежащей модификации или химической модификации.

Такое усиление активности полипептида может представлять собой увеличение активности или концентрации, или уровня экспрессии соответствующего полипептида на основе активности или концентрации полипептида, экспрессируемого в микробном штамме дикого типа или в микробном штамме перед модификацией, или увеличение количества продукта, продуцируемого от полипептида, но не ограничивается ими.

В микроорганизме по настоящему раскрытию частичная или полная модификация полинуклеотида может индуцироваться (а) гомологичной рекомбинацией с использованием вектора для вставки в хромосому в микроорганизме или редактированием генома с использованием генетически модифицированной нуклеазы (например, CRISPR-Cas9), и/или (б) обработкой светом, таким как ультрафиолетовые лучи и излучение, и/или химическими агентами, но не ограничиваясь ими. Способ осуществления модификации части или всего гена может включать способ с использованием технологии генной инженерии. Например, посредством введения в микроорганизм нуклеотидной последовательности или вектора, содержащего нуклеотидную последовательность, гомологичную интересующему гену, для вызова гомологичной рекомбинации можно удалить часть гена или весь данный ген. Введенная нуклеотидная последовательность или вектор может содержать доминантный селективный маркер, но не ограничиваясь им.

В микроорганизме по настоящему раскрытию вариант, полинуклеотид, L-триптофан и тому подобные являются такими, как описано в других аспектах.

Согласно еще одному другому аспекту настоящего раскрытия предложен способ продуцирования L-аминокислоты, который включает культивирование в среде штамма Escherichia coli, содержащего вариант по настоящему раскрытию или полинуклеотид по настоящему раскрытию.

Способ продуцирования L-аминокислоты по настоящему раскрытию может включать культивирование в среде штамма Escherichia coli, содержащего вариант по настоящему раскрытию или полинуклеотид по настоящему раскрытию, или вектор по настоящему раскрытию.

Кроме того, L-аминокислота по настоящему раскрытию может представлять собой L-трипофан.

В настоящем раскрытии термин «культивирование» означает выращивание штамма Escherichia coli по настоящему раскрытию при подходящем образом контролируемых условиях среды. Способ культивирования по настоящему раскрытию можно осуществлять в соответствии с подходящей средой и условиями культивирования, известными в данной области. Такой способ культивирования можно легко корректировать и использовать специалистами в данной области согласно выбранному штамму. В частности, культивирование может быть периодического типа, непрерывного типа и/или типа с подпиткой, но не ограничивается ими.

В настоящем раскрытии термин «среда» означает смешанное вещество, содержащее питательные вещества, требующиеся для культивирования штамма Escherichia coli по настоящему раскрытию в качестве главного компонента, и данная среда поставляет питательные вещества, факторы роста и тому подобное, включая воду, которые являются незаменимыми для выживания и развития. В частности, в качестве среды и других условий культивирования, используемых для культивирования штамма Escherichia coli по настоящему раскрытию, можно использовать любые без конкретного ограничения, при условии, что она представляет собой среду, используемую для обычного культивирования микроорганизмов. Штамм Escherichia coli по настоящему раскрытию можно культивировать в обычной среде, содержащей правильные источники углерода, источники азота, источники фосфора, неорганические соединения, аминокислоты и/или витамины, и тому подобное, при одновременном осуществлении контроля температуры, рН и тому подобного при аэробных условиях.

В частности, культуральную среду для штамма Escherichia coli можно найти в документе "Manual of Methods for General Bacteriology" by the American Society for Bacteriology (Washington, D.C., USA, 1981).

В настоящем раскрытии источники углерода включают углеводы, такие как глюкоза, сахароза, лактоза, фруктоза, сахароза и мальтоза; сахароспирты, такие как маннит и сорбит; органические кислоты, такие как пировиноградная кислота, молочная кислота и лимонная кислота; аминокислоты, такие как глутаминовая кислота, метионин и лизин; и тому подобное. Можно использовать природные органические питательные вещества, такие как гидролизат крахмала, мелассу, сырую мелассу, рисовые отруби, маниок, остаток сахарного тростника и жидкий кукурузный экстракт.В частности, можно использовать углеводы, такие как глюкоза и стерилизованные предобработанные мелассы (а именно: мелассы, превращенные в восстанавливающий сахар), и можно использовать подходящие количества других источников углерода разными способами без ограничения. Данные источники углерода можно использовать одиночно или в комбинации с двумя или более чем двумя, но не ограничиваясь ими.

В качестве источников азота можно использовать неорганические источники азота, такие как аммиак, сульфат аммония, хлорид аммония, ацетат аммония, фосфат аммония, карбонат аммония и нитрат аммония; и органические источники азота, такие как аминокислоты, такие как глутаминовая кислота, метионин и глутамин, пептон, NZ-амин, мясной экстракт, дрожжевой экстракт, солодовый экстракт, жидкий кукурузный экстракт, гидролизат казеина, рыбу или продукты ее разложения и обезжиренный соевый жмых или продукты его разложения. Данные источники азота можно использовать одиночно или в комбинации двух или более чем двух, но не ограничиваясь ими.

Источники фосфора могут включать монокалия фосфат, дикалия фосфат или натрийсодержащие соли, соответствующие им. В качестве неорганических соединений можно использовать хлорид натрия, хлорид кальция, хлорид железа, сульфат магния, сульфат железа, сульфат марганца, карбонат кальция и тому подобное. Помимо них могут содержаться аминокислоты, витамины и/или подходящие предшественники, и тому подобное. Данные компоненты или предшественники можно добавлять в среду порционно или непрерывно, но способ добавления не ограничивается ими.

Во время культивирования штамма Escherichia coli по настоящему раскрытию рН среды можно корректировать добавлением в данную среду правильным способом таких соединений, как гидроксид аммония, гидроксид калия, аммиак, фосфорная кислота и серная кислота. Во время культивирования пенообразование можно подавлять посредством применения пеногасителя, такого как сложный полигликолевый эфир жирной кислоты. В среду можно инъецировать кислород или кислородсодержащий газ для поддержания аэробного состояния данной среды, или газ можно не инъецировать, или можно инъецировать газообразный азот, водород или диоксид углерода для того, чтобы поддерживать анаэробное и микроаэробное состояния, но способ поддержания данного состояния не ограничивается ими.

При культивировании по настоящему раскрытию можно поддерживать температуру культивирования от 20°С до 45°С, в частности, от 25°С до 40°С, и данный штамм можно культивировать в течение примерно от 10 до 160 часов, но условия культивирования не ограничиваются ими.

L-аминокислота, продуцируемая посредством культивирования по настоящему раскрытию, может секретироваться в среду или может оставаться в клетках.

Способ продуцирования L-аминокислоты по настоящему раскрытию может дополнительно включать стадию получения штамма Escherichia coli по настоящему раскрытию, стадию приготовления среды для культивирования данного штамма или их комбинацию (в любом порядке), например, перед стадией культивирования.

Способ продуцирования L-аминокислоты по настоящему раскрытию может дополнительно включать стадию выделения L-аминокислоты из среды в соответствии с культивированием (среда, подвергнувшаяся воздействию культуры) или из штамма Escherichia coli. После стадии культивирования может быть дополнительно включена стадия выделения.

Выделение может служить для сбора интересующей L-аминокислоты посредством подходящего способа, известного в данной области, согласно способу культивирования микроорганизма по настоящему раскрытию, например, способу периодического, непрерывного культивирования или культивирования с подпиткой. Например, можно использовать центрифугирование, фильтрование, обработку осадителем кристаллизованного белка (высаливание), экстракцию, ультразвуковое разрушение, ультрафильтрацию, диализ, разные виды хроматографии, такие как хроматография на молекулярных ситах (гель-фильтрация), адсорбционная хроматография, ионообменная хроматография и аффинная хроматография, ВЭЖХ (высокоэффективная жидкостная хроматография), или их комбинацию. Интересующую L-аминокислоту можно выделять из среды или микроорганизма посредством подходящего способа, известного в данной области.

Способ получения L-аминокислоты по настоящему раскрытию может дополнительно включать стадию очистки. Очистку можно осуществлять посредством подходящего способа, известного в данной области. В одном примере, когда способ получения L-аминокислоты по настоящему раскрытию включает и стадию выделения, и стадию очистки, данные стадии выделения и очистки можно осуществлять непрерывно или прерывисто, независимо от порядка, или можно осуществлять одновременно, или посредством объединения в одну стадию, но способ осуществления данных стадий не ограничивается ими.

В способе по настоящему раскрытию вариант, полинуклеотид, вектор, штамм и тому подобное являются такими, как описано в других аспектах.

Еще одним другим аспектом настоящего раскрытия является предложение композиции для продуцирования L-аминокислоты, которая содержит штамм Escherichia coli, содержащий вариант по настоящему раскрытию, полинуклеотид, кодирующий данный вариант, вектор, содержащий данный полинуклеотид, или полинуклеотид по настоящему раскрытию; среду, в которой культивировался данный штамм Escherichia coli; или комбинации двух или более чем двух из них.

Композиция по настоящему раскрытию может дополнительно содержать произвольные подходящие эксципиенты, подлежащие обычному применению в композициях для продуцирования L-аминокислот. Такие эксципиенты могут представлять собой, например, консервант, увлажнитель, диспергент, суспендирующий агент, буферизующий агент, стабилизатор или изотоничный агент, но не ограничиваются ими.

В композиции по настоящему раскрытию вариант, полинуклеотид, вектор, штамм, среда, L-аминокислота и тому подобные являются такими, как описано в других аспектах.

Способ осуществления изобретения

Ниже настоящее раскрытие будет более подробно описано посредством Примеров. Однако следующие Примеры являются лишь предпочтительными воплощениями для иллюстрации настоящего раскрытия и, таким образом, не предназначены для ограничения ими объема настоящего раскрытия. Тем не менее, технические вопросы, не описанные в настоящем описании изобретения, могут быть в достаточной степени поняты и легко воплощены специалистами в технической области настоящего раскрытия или в аналогичных технических областях.

Пример 1. Конструирование штамма для осуществления экспрессии варианта феррохелатазы

Для того чтобы сконструировать штамм Е. coli с фенотипом варианта hemH (G137D; SEQ ID NO: 1), получали каждый из фрагментов для расположенной выше области и расположенной ниже области варианта G137D hemH Е. coli посредством осуществления ПЦР (полимеразная цепная реакция) с использованием гДНК W3110 Е. coli в качестве матрицы, наряду с парой праймеров SEQ ID NO: 5 и 6, и парой праймеров SEQ ID NO: 7 и 8. В качестве полимеразы использовали ДНК-полимеразу Solg™ Pfu-X, и ПЦР-амплификацию проводили следующим образом: денатурация при 95°С в течение 2 минут; 27 циклов денатурации при 95°С в течение 30 секунд, отжиг при 55°С в течение 1 минуты, полимеризация при 72°С в течение 1 минуты и полимеризация при 72°С в течение 5 минут. Для индукции гомологичной рекомбинации на хромосоме рекомбиантную плазмиду получали клонированием каждой из амплифицированных расположенной выше области и расположенной ниже области варианта G137D hemH и плазмиды pSG76-C, которая представляет собой вектор для хромосомной трансформации, расщепленный рестрикционным ферментом SmaI (Journal Of Bacteriology, July 1997, p.4426-4428) с использованием Gibson Assembly, и называется pSG76-C-hemH(G137D). Клонирование осуществляли посредством смешивания реактива Gibson Assembly и каждого из фрагментов гена при расчетном числе моль, с последующим хранением при 50°С в течение одного часа. Штамм CJ600 (KR 10-0792095) трансформировали плазмидой pSG76-C-hemH(G137D), культивировали в среде LB-Cm (10 г/л дрожжевого экстракта, 5 г/л NaCl, 10 г/л триптона, 25 мкг/л хлорамфеникола), и затем отбирали колонии с устойчивостью к хлорамфениколу. Подтверждали то, что отобранный трансформант представляет собой штамм, в котором плазмида pSG76-C-hemH(G137D) была вставлена в область гена hemH в хромосоме с использованием пары праймеров SEQ ID NO: 9 и 10. Штамм, для которого было сначала подтверждено, что в него был вставлен вариант hemH(G137D), был трансформирован pST76-AsceP (Nucleic Acids Research, том 27, номер 22, 1 ноября 1999, страницы 4409-4415), и отбирали колонии, которые вырастали в твердой среде LB-Amp (10 г/л дрожжевого экстракта, 5 г/л NaCl, 10 г/л триптона, 100 мкг/л ампициллина) при 30°С. Отобранные колонии собирали в твердую среду LB, LB-Amp и LB-Cm, соответственно, и культивировали при 42°С в течение 16 часов. Подтвердили то, что плазмида pST76-AsceP сохранялась в колониях, которые росли на твердой среде LB, но не росли на твердой среде LB-Amp, LB-Cm. Наконец, в колониях, где было подтверждено сохранение плазмиды pST76-AsceP, ген hemH амплифицировали с использованием пары праймеров SEQ ID NO: 9 и 10, соответственно, и штамм, в котором ген hemH был заменен на hemH(G137D), был отобран посредством секвенирования. Сконструированный таким образом штамм назвали CJ600_hemH_G137D.

Пример 2. Оценка способности к продуцированию L-триптофана микроорганизма, экспрессирующего вариант феррохелатазы

Способности к продуцированию L-триптофана каждого из штаммов, полученных в Примере 1, и родительского штамма (контрольного штамма) анализировали посредством оценки титра ферментации в колбе данных штаммов.

Колонии контрольного родительского штамма CJ600 и рекомбинантного штамма CJ600 hemH G137D, полученные в Примере 1, культивировали в течение ночи в твердой среде LB с использованием инокуляционной петли. Каждый из выращенных штаммов инокулировали в 250 мл колбе с угловыми перегородками, содержащей 25 мл продукционной среды, и культивировали со встряхиванием при 37°С при 200 об./мин в течение 48 часов. После завершения культивирования способности к продуцированию L-триптофана данных колоний измеряли посредством ВЭЖХ.

Продукционная среда (рН 7,0)

60 г глюкозы, 2,5 г дрожжевого экстракта, 20 г сульфата аммония [(NH4)2SO4⋅7H2O], 1 г сульфата магния (MgSO4), 2 г дигидрофосфата калия (КН2РО4), 5 г цитрата натрия (Na-цитрат), 1 г хлорида натрия (NaCl), 0,1 г тирозина (L-тирозин), 0,15 г L-фенилаланина, 40 г карбоната кальция (СаСО3) (на основе 1 литра дистиллированной воды).

Данный эксперимент повторяли 3 раза, и средние значения результатов анализа показаны в Таблице 1 ниже.

Как представлено в Таблице 1, штамм CJ600 hemH-G137D демонстрировал повышенную способность к продуцированию L-триптофана по сравнению с контрольной группой.

Штамм CJ600_hemH-G137D был назван СА04-4590, депонирован в Корейский центр культуры микроорганизмов учреждение депонирования, работающее согласно Будапештскому соглашению, 2 декабря 2020 г., и ему был дан номер доступа КССМ12882Р.

Из приведенного выше описания специалистам в технической области, к которой принадлежит настоящее раскрытие, будет понятно то, что настоящее раскрытие можно осуществлять в других конкретных формах без изменения его технической сущности и важных характеристик. В данном отношении следует понимать то, что воплощения, описанные выше, являются во всех отношениях иллюстративными и не ограничивающими. Объем настоящего раскрытия следует истолковывать как включающий все изменения или модифицированные формы, происходящие из значения и объема формулы изобретения, подлежащей описанию ниже, а не из приведенного выше подробного описания и эквивалентных ему идей.

--->

<110> CJ CheilJedang Corporation

<120> Новый вариант феррохелатазы и способ продуцирования

L-триптофана с его применением

<130> OPA21157

<150> KR 10-2021-0010275

<151> 2021-01-25

<160> 10

<170> KoPatentIn 3.0

<210> 1

<211> 320

<212> PRT

<213> Artificial Sequence

<220>

<223> hemH

<400> 1

Met Arg Gln Thr Lys Thr Gly Ile Leu Leu Ala Asn Leu Gly Thr Pro

1 5 10 15

Asp Ala Pro Thr Pro Glu Ala Val Lys Arg Tyr Leu Lys Gln Phe Leu

20 25 30

Ser Asp Arg Arg Val Val Asp Thr Ser Arg Leu Leu Trp Trp Pro Leu

35 40 45

Leu Arg Gly Val Ile Leu Pro Leu Arg Ser Pro Arg Val Ala Lys Leu

50 55 60

Tyr Ala Ser Val Trp Met Glu Gly Gly Ser Pro Leu Met Val Tyr Ser

65 70 75 80

Arg Gln Gln Gln Gln Ala Leu Ala Gln Arg Leu Pro Glu Met Pro Val

85 90 95

Ala Leu Gly Met Ser Tyr Gly Ser Pro Ser Leu Glu Ser Ala Val Asp

100 105 110

Glu Leu Leu Ala Glu His Val Asp His Ile Val Val Leu Pro Leu Tyr

115 120 125

Pro Gln Phe Ser Cys Ser Thr Val Asp Ala Val Trp Asp Glu Leu Ala

130 135 140

Arg Ile Leu Ala Arg Lys Arg Ser Ile Pro Gly Ile Ser Phe Ile Arg

145 150 155 160

Asp Tyr Ala Asp Asn His Asp Tyr Ile Asn Ala Leu Ala Asn Ser Val

165 170 175

Arg Ala Ser Phe Ala Lys His Gly Glu Pro Asp Leu Leu Leu Leu Ser

180 185 190

Tyr His Gly Ile Pro Gln Arg Tyr Ala Asp Glu Gly Asp Asp Tyr Pro

195 200 205

Gln Arg Cys Arg Thr Thr Thr Arg Glu Leu Ala Ser Ala Leu Gly Met

210 215 220

Ala Pro Glu Lys Val Met Met Thr Phe Gln Ser Arg Phe Gly Arg Glu

225 230 235 240

Pro Trp Leu Met Pro Tyr Thr Asp Glu Thr Leu Lys Met Leu Gly Glu

245 250 255

Lys Gly Val Gly His Ile Gln Val Met Cys Pro Gly Phe Ala Ala Asp

260 265 270

Cys Leu Glu Thr Leu Glu Glu Ile Ala Glu Gln Asn Arg Glu Val Phe

275 280 285

Leu Gly Ala Gly Gly Lys Lys Tyr Glu Tyr Ile Pro Ala Leu Asn Ala

290 295 300

Thr Pro Glu His Ile Glu Met Met Ala Asn Leu Val Ala Ala Tyr Arg

305 310 315 320

<210> 2

<211> 963

<212> DNA

<213> Artificial Sequence

<220>

<223> hemH

<400> 2

atgcgtcaga ctaaaaccgg tatcctgctg gcaaacctgg gtacgcccga tgcccccaca 60

cctgaagcgg taaaacgcta tctgaaacaa tttttaagcg acagacgcgt ggttgatacc 120

tcacggttgt tatggtggcc attgctgcgc ggcgtgattt tgccgctgcg ctcgccgcgt 180

gtggcgaagc tgtatgcctc tgtctggatg gaaggtggct cgccgctgat ggtttacagc 240

cgccagcaac agcaggcgct ggcacaacgt ttaccggaga tgcccgtagc gctgggaatg 300

agctacggct cgccatcact ggaaagcgcc gtagatgaac tcctggcaga gcatgtagat 360

catattgtgg tgctgccgct ttatccgcaa ttctcctgtt ctacggtcga tgcggtatgg 420

gatgaactgg cacgcattct ggcgcgcaaa cgtagcattc cggggatatc gtttatacgt 480

gattacgccg ataaccacga ttacattaat gcactggcga acagcgtacg cgcttctttt 540

gccaaacatg gcgaaccgga tctgctactg ctctcttatc atggcattcc ccagcgttat 600

gcagatgaag gcgatgatta cccgcaacgt tgccgcacaa cgactcgtga actggcttcc 660

gcattgggga tggcaccgga aaaagtgatg atgacctttc agtcgcgctt tggtcgggaa 720

ccctggctga tgccttatac cgacgaaacg ctgaaaatgc tcggagaaaa aggcgtaggt 780

catattcagg tgatgtgccc gggctttgct gcggattgtc tggagacgct ggaagagatt 840

gccgagcaaa accgtgaggt cttcctcggt gccggcggga aaaaatatga atatattccg 900

gcgcttaatg ccacgccgga acatatcgaa atgatggcta atcttgttgc cgcgtatcgc 960

taa 963

<210> 3

<211> 320

<212> PRT

<213> Unknown

<220>

<223> hemH

<400> 3

Met Arg Gln Thr Lys Thr Gly Ile Leu Leu Ala Asn Leu Gly Thr Pro

1 5 10 15

Asp Ala Pro Thr Pro Glu Ala Val Lys Arg Tyr Leu Lys Gln Phe Leu

20 25 30

Ser Asp Arg Arg Val Val Asp Thr Ser Arg Leu Leu Trp Trp Pro Leu

35 40 45

Leu Arg Gly Val Ile Leu Pro Leu Arg Ser Pro Arg Val Ala Lys Leu

50 55 60

Tyr Ala Ser Val Trp Met Glu Gly Gly Ser Pro Leu Met Val Tyr Ser

65 70 75 80

Arg Gln Gln Gln Gln Ala Leu Ala Gln Arg Leu Pro Glu Met Pro Val

85 90 95

Ala Leu Gly Met Ser Tyr Gly Ser Pro Ser Leu Glu Ser Ala Val Asp

100 105 110

Glu Leu Leu Ala Glu His Val Asp His Ile Val Val Leu Pro Leu Tyr

115 120 125

Pro Gln Phe Ser Cys Ser Thr Val Gly Ala Val Trp Asp Glu Leu Ala

130 135 140

Arg Ile Leu Ala Arg Lys Arg Ser Ile Pro Gly Ile Ser Phe Ile Arg

145 150 155 160

Asp Tyr Ala Asp Asn His Asp Tyr Ile Asn Ala Leu Ala Asn Ser Val

165 170 175

Arg Ala Ser Phe Ala Lys His Gly Glu Pro Asp Leu Leu Leu Leu Ser

180 185 190

Tyr His Gly Ile Pro Gln Arg Tyr Ala Asp Glu Gly Asp Asp Tyr Pro

195 200 205

Gln Arg Cys Arg Thr Thr Thr Arg Glu Leu Ala Ser Ala Leu Gly Met

210 215 220

Ala Pro Glu Lys Val Met Met Thr Phe Gln Ser Arg Phe Gly Arg Glu

225 230 235 240

Pro Trp Leu Met Pro Tyr Thr Asp Glu Thr Leu Lys Met Leu Gly Glu

245 250 255

Lys Gly Val Gly His Ile Gln Val Met Cys Pro Gly Phe Ala Ala Asp

260 265 270

Cys Leu Glu Thr Leu Glu Glu Ile Ala Glu Gln Asn Arg Glu Val Phe

275 280 285

Leu Gly Ala Gly Gly Lys Lys Tyr Glu Tyr Ile Pro Ala Leu Asn Ala

290 295 300

Thr Pro Glu His Ile Glu Met Met Ala Asn Leu Val Ala Ala Tyr Arg

305 310 315 320

<210> 4

<211> 1000

<212> DNA

<213> Unknown

<220>

<223> hemH

<400> 4

atgcgtcaga ctaaaaccgg tatcctgctg gcaaacctgg gtacgcccga tgcccccaca 60

cctgaagcgg taaaacgcta tctgaaacaa tttttaagcg acagacgcgt ggttgatacc 120

tcacggttgt tatggtggcc attgctgcgc ggcgtgattt tgccgctgcg ctcgccgcgt 180

gtggcgaagc tgtatgcctc tgtctggatg gaaggtggct cgccgctgat ggtttacagc 240

cgccagcaac agcaggcgct ggcacaacgt ttaccggaga tgcccgtagc gctgggaatg 300

agctacggct cgccatcact ggaaagcgcc gtagatgaac tcctggcaga gcatgtagat 360

catattgtgg tgctgccgct ttatccgcaa ttctcctgtt ctacggtcgg tgcggtatgg 420

gatgaactgg cacgcattct ggcgcgcaaa cgtagcattc cggggatatc gtttatacgt 480

gattacgccg ataaccacga ttacattaat gcactggcga acagcgtacg cgcttctttt 540

gccaaacatg gcgaaccgga tctgctactg ctctcttatc atggcattcc ccagcgttat 600

gcagatgaag gcgatgatta cccgcaacgt tgccgcacaa cgactcgtga actggcttcc 660

gcattgggga tggcaccgga aaaagtgatg atgacctttc agtcgcgctt tggtcgggaa 720

ccctggctga tgccttatac cgacgaaacg ctgaaaatgc tcggagaaaa aggcgtaggt 780

catattcagg tgatgtgccc gggctttgct gcggattgtc tggagacgct ggaagagatt 840

gccgagcaaa accgtgaggt cttcctcggt gccggcggga aaaaatatga atatattccg 900

gcgcttaatg ccacgccgga acatatcgaa atgatggcta atcttgttgc cgcgtatcgc 960

taaagctgag cggtaaagaa ctgagcgccg tcgcgaagag 1000

<210> 5

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Прямой праймер

<400> 5

ggaattcgag ctcggtaccc atgcgtcaga ctaaaaccgg 40

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Обратный праймер

<400> 6

cataccgcat cgaccgtaga a 21

<210> 7

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Прямой праймер

<400> 7

ttctacggtc gatgcggtat g 21

<210> 8

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Обратный праймер

<400> 8

gttatcccta gcggatcccc ttagcgatac gcggcaacaa 40

<210> 9

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Прямой праймер

<400> 9

gacctctcac agcaattagt t 21

<210> 10

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Обратный праймер

<400> 10

cgacgaggct cttcgcgacg 20

<---

Похожие патенты RU2791193C1

название год авторы номер документа
Новый вариант экспортирующей медь АТФазы А Р-типа и способ получения L-триптофана с его применением 2021
  • Пак Гоун
  • Чан Джин Сук
  • Чон Му
  • Ким Хён А
  • Бэ Чжи
  • Ким Хё Джин
  • Со Чан Иль
RU2790565C1
Новый вариант гидролазы и способ получения L-триптофана 2021
  • Пак Гоун
  • Чан Джин Сук
  • Чон Му
  • Ким Хён А
  • Бэ Чжи
  • Ким Хё Джин
  • Со Чан Иль
RU2793185C1
НОВЫЙ ВАРИАНТ ДЕЗОКСИГУАНОЗИНТРИФОСФАТТРИФОСФОГИДРОЛАЗЫ И СПОСОБ ПОЛУЧЕНИЯ L-ТРИПТОФАНА С ЕГО ПРИМЕНЕНИЕМ 2021
  • Пак Гоун
  • Чан Джин Сук
  • Чон Му
  • Ким Хён А
  • Бэ Чжи
  • Ким Хё Джин
  • Со Чан Иль
RU2790563C1
НОВЫЙ ВАРИАНТ ОБМЕНННОГО ТРАНСПОРТЕРА Н(+)/CL(-) И СПОСОБ ПОЛУЧЕНИЯ L-ТРИПТОФАНА С ЕГО ПРИМЕНЕНИЕМ 2021
  • Пак Гоун
  • Чан Джин Сук
  • Чон Му
  • Ким Хён А
  • Бэ Чжи
  • Ким Хё Джин
  • Со Чан Иль
RU2790564C1
Новый вариант белка HTRL и способ получения L-триптофана с его применением 2021
  • Пак Гоун
  • Чан Джин Сук
  • Чон Му
  • Ким Хён А
  • Бэ Чжи
  • Ким Хё Джин
  • Со Чан Иль
RU2795972C1
Новый вариант киназы/фосфатазы изоцитратдегидрогеназы и способ получения L-триптофана с его применением 2021
  • Чан Джин Сук
  • Со Чан Иль
  • Ким Хён А
  • Чон Му
  • Ху Лан
  • Ю Херён
  • Ким Бина
  • Сон Сун Кван
RU2790512C1
НОВЫЙ ВАРИАНТ РАСТВОРИМОЙ ПИРИДИННУКЛЕОТИДТРАНСГИДРОГЕНАЗЫ И СПОСОБ ПОЛУЧЕНИЯ L-ТРИПТОФАНА С ЕГО ПРИМЕНЕНИЕМ 2021
  • Чан Джин Сук
  • Со Чан Иль
  • Ким Хён А
  • Чон Му
  • Ху Лан
  • Ю Херён
  • Ким Бина
  • Сон Сун Кван
RU2791243C1
Новый вариант цитозинпермеазы и способ получения L-триптофана с его применением 2021
  • Пак Гоун
  • Чан Джин Сук
  • Чон Му
  • Ким Хён А
  • Бэ Чжи
  • Ким Хё Джин
  • Со Чан Иль
RU2787791C1
Новый вариант белка и способ получения L-лизина с его применением 2021
  • Чан Джин Сук
  • Ли Хан Хён
  • Ким Хе Ми
  • Пак Сочжун
  • Ким Бён Су
RU2793405C1
НОВЫЙ ВАРИАНТ МЕМБРАННОГО БЕЛКА КЛЕТОЧНОГО ДЕЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ L-ЛИЗИНА С ЕГО ИСПОЛЬЗОВАНИЕМ 2021
  • Чан Джин Сук
  • Ли Хан Хён
  • Ким Хе Ми
  • Пак Сочжун
  • Ким Бён Су
RU2793433C1

Реферат патента 2023 года НОВЫЙ ВАРИАНТ ФЕРРОХЕЛАТАЗЫ И СПОСОБ ПОЛУЧЕНИЯ L-ТРИПТОФАНА С ЕГО ПРИМЕНЕНИЕМ

Изобретение относится к биотехнологии и представляет собой вариант феррохелатазы, обладающий активностью феррохелатазы, состоящий из аминокислотной последовательности, представленной SEQ ID NO: 1, в которой глицин, который представляет собой аминокислоту, соответствующую положению 137 в SEQ ID NO: 3, заменен аспарагиновой кислотой. Изобретение относится также к способу получения L-триптофана, включающего культивирование в среде микроорганизма Escherichia coli, содержащего вариант феррохелатазы или полинуклеотид, кодирующий данный вариант. Изобретение позволяет получать L-триптофан с высокой степенью эффективности. 4 н. и 1 з.п. ф-лы, 1 табл., 2 пр.

Формула изобретения RU 2 791 193 C1

1. Вариант феррохелатазы, обладающий активностью феррохелатазы, состоящий из аминокислотной последовательности, представленной SEQ ID NO: 1, в которой глицин, который представляет собой аминокислоту, соответствующую положению 137 в SEQ ID NO: 3, заменен аспарагиновой кислотой.

2. Полинуклеотид, кодирующий вариант по п. 1.

3. Микроорганизм Escherichia coli, продуцирующий L-триптофан, содержащий вариант по п. 1 или полинуклеотид, кодирующий данный вариант.

4. Микроорганизм по п. 3, который имеет повышенную способность к продуцированию L-триптофана по сравнению с Escherichia coli, содержащей полипептид SEQ ID NO: 3 или полинуклеотид, кодирующий данный полипептид.

5. Способ продуцирования L-триптофана, включающий культивирование в среде микроорганизма Escherichia coli, содержащего вариант по п. 1 или полинуклеотид, кодирующий данный вариант.

Документы, цитированные в отчете о поиске Патент 2023 года RU2791193C1

NCBI Reference Sequence: WP_001250103.1, 16.12.2020 Найдено в Интернет по адресу https://www.ncbi.nlm.nih.gov/protein/447172847?sat=49&satkey=62390777
WO 2005056776 A1, 23.06.2005
WO 2003044192 A1, 30.05.2003
US 20010049126 A1, 06.12.2001
G C Ferreira et al
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1

RU 2 791 193 C1

Авторы

Пак Гоун

Чан Джин Сук

Чон Му

Ким Хён А

Бэ Чжи

Ким Хё Джин

Со Чан Иль

Даты

2023-03-03Публикация

2021-04-19Подача