Предлагаемое техническое решение относится к системе электрохимической защиты от коррозии морских сооружений методом наложенного катодного тока. Основной отличительной способностью метода является возможность регулировки и мониторинга защитного тока для оценки остаточного ресурса протекторного сплава. Система может быть использована для долговременной защиты подводных морских сооружений, как для уже эксплуатирующихся объектов с вышедшей из строя протекторной защитой, так и для вновь вводимых в эксплуатацию.
Известна полезная модель «Электрохимический источник тока для катодной защиты подземных сооружений» (см. патент RU №149465, МПК Н01М 14/00, C23F 13/12, Н01М 4/00, G01N 27/28 от 06.11.2013) имеющая сходство с заявленным техническим решением. В ней описывается электрохимический источник тока с анодом, выполненным из протектора типа ПМ-10У с порошкообразным активатором, а также катод из графитовой трубы и смеси коксовой мелочи и хлорида натрия. Оба электрода помещены в цилиндрический корпус и представляют гальваническую пару с грунтовой водой в качестве электролита, образующую разность потенциалов 1,3-1,5 В.
Недостатками указанного технического решения являются:
- невозможность использования технического решения в морской воде из-за наличия магниевых электродов в конструкции подверженных ускоренному химическому растворению;
- необходимость подключения внешних анодов и преобразователя для катодной защиты морских сооружений наложенным током;
- отсутствие возможности удаленного контроля и мониторинга работоспособности источника тока;
- вследствие малой разности потенциалов отсутствие возможности использования одного электрохимического источника тока для энергопотребителей катодной защиты без специальных устройств.
Способ контроля режима работы протекторной защиты стальных корпусов кораблей и судов (см. патент RU №2589246, МПК G01N 17/00 от 10.07.2016 г.) подобен заявленному техническому решению. Суть изобретения состоит в том, что при помощи переносного электрода сравнения и электроизмерительного прибора производится периодическое измерение потенциала и силы тока между электродом сравнения и корпусом судна в контрольных точках. Оценку состояния протекторов определяют по значению измеренного потенциала, который должен быть в пределах от минус 0,75 до минус 1,05 В, а сила тока в этой цепи должна соответствовать 60-66 мА.
Недостатками вышеописанного технического решения являются:
- отсутствие возможности оценки реального остаточного ресурса протектора;
- субъективность оценки состояния протектора по косвенным признакам, таким, как потенциал корпуса судна относительно электрода сравнения;
- необходимость подключения внешнего электрода сравнения;
- отсутствие возможности регулировки равномерности растворения протекторного сплава;
- метод может быть использован только для определения состояния протекторной защиты стальных корпусов кораблей и судов;
- малоинформативный (т.к. не учитывается контактирующая с водой площадь судна) и спорный показатель оценки состояния протекторного материала на основе силы тока между корпусом судна и электродом сравнения.
Наиболее близким аналогом к заявляемому техническому решению является «Способ определения коррозионного состояния внутреннего защитного покрытия резервуара» (см. патент RU №2138796, МПК G01N 17/00 от 27.09.1999). В нем описывается техническое решение по осуществлению простого способа определения коррозионного состояния внутреннего защитного покрытия резервуара, имеющего постоянную во времени точность измерений, независимо от времени его эксплуатации. Задача решается следующим образом: в разрыв цепи между протектором, находящимся в рабочей среде и защищаемым резервуаром подключают амперметр, далее определяют величину тока в цепи на данный момент времени и по формуле S=K*I (где, I - ток в цепи, К - коэффициент зависящий от электропроводности среды и типа протектора) рассчитывают процент оголившегося защитного покрытия S.
Недостатками указанного технического решения являются:
- отсутствие возможности оценки состояния материала протекторного сплава;
- отсутствие возможности регулировки равномерности растворения стержней протекторного сплава;
- невозможность подключения амперметра на эксплуатирующийся системе протекторной защиты в морской воде;
- отсутствие возможности использования методов расчета для морских условий эксплуатации, т.к. учтено малое количество коррозионных факторов в следствие постоянства электропроводности;
- отсутствие возможности удаленного контроля и мониторинга работоспособности изобретения.
Задачей предлагаемого изобретения является повышение надежности морских систем протекторной защиты за счет возможности контроля и определения степени износа протекторного сплава в процессе эксплуатации. В качестве основного критерия определения работоспособности протекторной защиты для подводных морских сооружений используется потенциал протекторного сплава относительно электрода сравнения. Данный показатель зачастую является малоинформативным и косвенным, т.к. при критическом расходе протекторного сплава его потенциал останется в пределах нормы. Фактически, основными критериями остаточного ресурса протекторной защиты являются взаимосвязанные показатели остаточной массы и фактической токоотдачи (количества электричества) протекторного сплава, но определить эти показатели в морских условиях на эксплуатирующейся системе электрохимической защиты является проблематичным. Заявляемое техническое решение позволяет решить эту проблему и дает возможность контролировать фактическую токоотдачу и массу протекторного сплава в реальном времени.
Указанная задача решается тем, что для осуществления контроля расхода протекторного сплава протектора в системе электрохимической защиты морских сооружений наложенным током в разрыв цепи между трубой (защищаемым сооружением) и протектором устанавливается плата балансировки. В качестве протекторного сплава используются ячейки, подключенные отдельными выводами к балансировочной плате. Количество и геометрические параметры ячеек рассчитываются в соответствии с площадью защищаемого сооружения. Оценка ресурса протекторного сплава происходит за счет подсчета платой балансировки количества отданного с протектора электричества (А⋅ч), а контроль осуществляется за счет создаваемого балансировочной платой эффекта равномерного распределения токовой нагрузки на каждую ячейку. Электропитание платы осуществляется за счет наличия тока в цепи между защищаемым сооружением и протектором.
На фиг. 1 представлена схема подключения модульной системы протекторной защиты для морских сооружений «Умный протектор», а на фиг. 2 представлен алгоритм работы платы.
Модульная система протекторной защиты «Умный протектор» 1 состоит из нескольких протекторных ячеек 2 (на рисунке количество ячеек приведено для примера), ток с которых стекает на поверхность защищаемого стального подводного сооружения 7 (показано стрелками). Ячейки 2 подключены кабелями 3 к клеммам на балансировочной плате 4, которая установлена в герметичный корпус 5. Плата балансировки 4 подключена кабелем 6 к защищаемому сооружению 7.
Плата балансировки 4 для двух протекторных ячеек, представленная на фиг.2 состоит из модуля регулировки выходного тока 8, управляющего процессора 9, модуля измерения входящих и выходящих токовых параметров 10.
От модуля входящих и выходящих токовых параметров 10 управляющий процессор 9 получает данные о входящем общем токе с защищаемого сооружения (трубы) 7 и при помощи модуля регулировки выходного тока 8 осуществляет регулировку выходного тока для каждой протекторной ячейки 2. Контроль и подсчет количества электричества, которое прошло через участок цепи к ячейке, осуществляется в плате балансировки посредством управляющего процессора 9 через модуль измерения входящих и выходящих токовых параметров 10.
Рассмотрим в качестве примера только две ячейки 2а и 2б.
При превышении расчетного среднего расхода количества электричества ячейки 2а управляющий процессор 9 при помощи модуля входящих и выходящих токовых параметров 10 осуществляет корректировку силы тока в цепи ячейки 2а, выходящей за пределы средней токовой нагрузки для осуществления сбалансированного расхода протекторного материала на всех ячейках 2а, 26 и т.д. протектора. Например, модуль 10 определил, что в процессе эксплуатации в цепи одной из протекторных ячеек 2а происходит повышенный расход количества электричества величиной в 300 А⋅ч, хотя средний показатель, рассчитанный через силу тока управляющим процессором 9 во время эксплуатации для всех ячеек 2а, 26 и т.д. составляет 200 А⋅ч. Для снижения расхода протекторного сплава в усиленно-расходуемой ячейке 2а управляющий процессор 9 при помощи модуля 8 на определенный промежуток времени полностью отключает ток в цепи этой ячейки или снижает силу тока на величину, которая соответствует расходу тока 100 А⋅ч, с последующим увеличением среднего показателя выше 200 А⋅ч в цепях ячейки 26 и других ячеек для компенсации общего суммарного проектного тока для защиты сооружения 7. При помощи системы коррозионного мониторинга также можно измерять и контролировать данные показатели в принудительном режиме.
В частных случаях ячейки протекторов 2 могут быть установлены на трубе 7 во внешнем произвольном корпусе или раме, которая при помощи удлиненного кабеля 6 подключена к плате балансировки 4, установленной в отдельный герметичный корпус 5, также к устройству 1 может быть подключен модуль передачи данных для совместной работы с системами коррозионного мониторинга, электропитание платы балансировки 4 может быть осуществлено от отдельного сменного или перезаряжаемого элемента питания, установленного внутрь герметичного корпуса 5.
Модульная система также может иметь модуль связи для синхронизации с системой коррозионного мониторинга с помощью проводной, беспроводной или оптической связи, а также путем визуального обследования при помощи установленного на внешней части корпуса дисплея. Электропитание платы балансировки может осуществляться от отдельного источника.
название | год | авторы | номер документа |
---|---|---|---|
Система мониторинга технического состояния подводных морских объектов с протекторной защитой в реальном времени | 2023 |
|
RU2816821C1 |
Измеритель тока протекторной защиты морских сооружений | 2021 |
|
RU2781549C1 |
Протектор со сменным активным элементом | 2022 |
|
RU2808042C1 |
Протекторный сплав на основе магния | 1990 |
|
SU1792996A1 |
Система для контроля параметров защиты от коррозии газораспределительных сетей | 2023 |
|
RU2820314C1 |
СТЕНД ИМИТАЦИИ РАБОТЫ СИСТЕМ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ И СПОСОБ ОБУЧЕНИЯ C ПРИМЕНЕНИЕМ СТЕНДА | 2018 |
|
RU2678882C1 |
Устройство катодной защиты и коррозионного мониторинга с защитой от импульсных перенапряжений | 2024 |
|
RU2818507C1 |
Протекторный сплав на основе магния | 1980 |
|
SU1770431A1 |
Тяговая аккумуляторная батарея на основе литий-титанат оксидных ячеек для беспилотных высокоавтоматизированных транспортных средств | 2022 |
|
RU2799472C1 |
Комплекс дистанционного коррозионного мониторинга подводных трубопроводов | 2016 |
|
RU2625696C1 |
Изобретение относится к системе электрохимической защиты от коррозии морских сооружений методом наложенного тока и может быть использовано для долговременной защиты подводных морских сооружений. Модульная система содержит ячейки с протекторами, балансировочную плату и кабели между ячейками и балансировочной платой. Плата балансировки подключена в разрыв цепи между защищаемым сооружением и ячейками с протекторами, имеет усиленный диэлектрический корпус. Плата балансировки и подсчета растворения протектора содержит управляющий процессор, модуль регулировки выходного тока и модуль измерения входящих и выходящих токовых параметров. Модуль измерения входящих и выходящих токовых параметров подключен к управляющему процессору, а модули регулировки выходного тока ячеек подключены к управляющему процессору и модулю измерения входящих и выходящих токовых параметров. Количество ячеек рассчитывается в соответствии с площадью защищаемого сооружения. Оценка ресурса происходит за счет создаваемого балансировочной платой эффекта равномерного распределения токовой нагрузки на каждую ячейку и подсчета количества электричества. Изобретение позволяет осуществлять регулировку и мониторинг защитного тока для оценки остаточного ресурса протекторного сплава. 2 з.п. ф-лы, 2 ил.
1. Модульная система протекторной защиты для морских сооружений, содержащая по меньшей мере одну ячейку с протекторами, плату балансировки и кабели между ячейками и балансировочной платой, причем плата балансировки подключена в разрыв цепи между защищаемым сооружением и ячейками с протекторами, имеет усиленный диэлектрический корпус, плата балансировки и подсчета растворения протектора содержит управляющий процессор, модуль регулировки выходного тока и модуль измерения входящих и выходящих токовых параметров, модуль измерения входящих и выходящих токовых параметров подключен к управляющему процессору, а модули регулировки выходного тока ячеек подключены к управляющему процессору и модулю измерения входящих и выходящих токовых параметров.
2. Модульная система по п. 1, отличающаяся тем, что протекторы установлены во внешнем произвольном корпусе.
3. Модульная система по п. 1, отличающаяся тем, что плата балансировки и подсчета растворения ячеек установлена в отдельный герметичный корпус.
RU 2138796 С1, 27.09.1991 | |||
СПОСОБ КОНТРОЛЯ РЕЖИМА РАБОТЫ ПРОТЕКТОРНОЙ ЗАЩИТЫ СТАЛЬНЫХ КОРПУСОВ КОРАБЛЕЙ И СУДОВ | 2015 |
|
RU2589246C1 |
УСТРОЙСТВО ДЛЯ ОЦЕНКИ ЗАЩИЩЕННОСТИ ОТ КОРРОЗИИ ПО ВЕЛИЧИНЕ СМЕЩЕНИЯ ОТ ЕСТЕСТВЕННОГО ПОТЕНЦИАЛА | 2011 |
|
RU2471171C1 |
US 3978716 A1, 07.09.1976 | |||
Аппарат для промывки песка | 1933 |
|
SU39750A1 |
Авторы
Даты
2023-03-10—Публикация
2021-11-01—Подача