Изобретение относится к области коммунального хозяйства и экологического строительства и используется для биологической очистки хозяйственно-бытовых и прочих близких к ним по составу сточных вод малых объемов при высокой неравномерности поступающих загрязнений.
Установка обеспечивает очистку малых расходов сточных вод с глубоким удалением соединений азота при пониженных затратах на аэрацию и может использоваться в том числе для технологических схем очистки сточных вод для средних и больших объемов.
Известен окислительный канал (RU 2 021 981 С1), представляющий собой вытянутый в плане резервуар, разделенный продольной перегородкой на сообщающиеся между собой каналы. Аэратор установлен на понтоне и имеет полый вал и закрепленную на его нижнем конце турбину с лопастями в форме гребного винта, отверстия между лопастями. Недостатком данного технического решения является сниженная эффективность механической системы аэрации в сравнении с пневматической системой, нерегулируемое распределение концентрации растворенного кислорода по объему сооружения, отсутствие решений по сохранению крупности флокул активного ила в возвратном рециркуляционном потоке, что делает невозможным осуществление эффективного процесса одновременной нитрификации и денитрификации и увеличивает энергетические затраты.
Известен окислительный канал (RU 2 090 520 С1), содержащий канал, разделенный продольной перегородкой, снабженной узлами ввода и отвода воды, насос с электродвигателем и системой управления электродвигателем, оборудованный всасывающим и напорным трубопроводом, камеру смешения и распределительное устройство с соплами, размещенными в вершинах квадратов и ориентированными по их сторонам, вентилятор с электродвигателем и системой управления электродвигателем, подключенной к реле уровня. Недостатком данного технического решения является повышенное физико-механическое воздействие на флокулы активного ила при аэрации, нерегулируемое распределение концентрации растворенного кислорода по объему сооружения, что значительно снижает эффективность одновременной нитрификации и денитрификации и приводит к повышенным энергозатратам на аэрацию иловой смеси.
Известна унифицированная модульная установка для биохимической очистки сточных вод (патент на изобретение RU 2 280 622 С2) состоящая из прямоугольного корпуса в виде емкости, включающей встроенный блок механической очистки, секционированный аэротенк с носителями прикрепленной микрофлоры в виде съемных кассет с закрепленными ершовыми полимерными элементами и закрепленной на них аэрационной системой, эхолот, биореактор доочистки, блоки дефосфотации и обеззараживания сточных вод, системы аэрации и рециркуляции активного ила, встроенный вторичный отстойник со слоем взвешенного осадка с затопленным водосливом. Недостатком данного технического решения является отсутствие продольной рециркуляции в аэротенке и необходимость использования системы рециркуляции возвратного активного ила из вторичного отстойника, что приводит к разрушению флокул активного ила при сниженном массопереносе растворенного кислорода из иловой смеси непосредственно во флокулы активного ила, что значительно снижает эффективность одновременной нитрификации и денитрификации и приводит к потере стабильности биомассы при пониженных концентрациях растворенного кислорода в системе.
Наиболее близким к заявленному изобретению является устройство для биологической очистки сточных вод (патент на полезную модель RU 80 164 U1) представляющее собой аэротенк с продольной рециркуляцией иловой смеси, образованный выполненным в корпусе циркуляционным окислительным каналом с размещенными в нем управляемой системой аэрации и мешалкой горизонтального потока с электродвигателем, узел впуска сточных вод, узел впуска активного ила, узел выпуска очищенной жидкости, систему для поддержания постоянными скоростей потока иловой смеси в аэротенке. Недостатком данного технического решения является отсутствие встроенного вторичного отстойника со слоем взвешенного осадка, в связи с чем возникает необходимость устройства внешнего вторичного отстойника с системой рециркуляции возвратного активного ила, основанной на работе насосного оборудования, что приводит к механическому разрушению флокул активного ила и значительно снижает эффективность одновременной нитрификации и денитрификации. Кроме того, данное техническое решение не предусматривает эксплуатацию устройства в режиме одновременной нитрификации и денитрификации, что приводит к необходимости создания отдельных аэробных и аноксидных кислородных зон в сооружении при повышенных энергозатратах.
Техническим результатом заявленного изобретения является создание установки очистки хозяйственно-бытовых сточных вод, позволяющей осуществлять эффективную очистку сточных вод в том числе от соединений азота при низкокислородных условиях в биореакторе, что обеспечивает энергоэффективность процесса.
Для достижения этой цели в установке поддерживаются кислородные условия, позволяющие обеспечивать эффективный процесс одновременной нитрификации и денитрификации. При этом для контроля стабильности биомассы и предотвращения нитчатого вспухания активного ила в установке предусмотрена зона с относительно высоким содержанием растворенного кислорода. Для снижения ингибирующего влияния растворенного кислорода на процесс одновременной нитрификации и денитрификации в установке создаются условия для формирования крупных флокул активного ила с перспективой формирования аэробных гранул активного ила. Для этого в канале установки предусмотрен встроенных вторичный отстойник, состоящий из двух последовательных секций. Благодаря подобной конструкции крупные флокулы активного ила оседают в первой секции и возвращаются непосредственно в канал биореактора без механического воздействия насосного оборудования, мелкие фракции активного ила попадают во вторую секцию, откуда откачиваются на переработку, что позволяет задерживать в системе только крупные флокулы активного ила.
Другие отличительные признаки и преимущества изобретения ясно вытекают из описания, приведенного ниже для иллюстрации и не являющегося ограничительным, со ссылками на прилагаемый рисунок, который схематично изображает функциональную схему установки биологической очистки сточных вод циркуляционного типа, вид сверху, согласно изобретению.
На Фиг. 1 представлена конструкция установки.
Технический результат достигается тем, что установка биологической очистки сточных вод циркуляционного типа включает в себя биореактор с в виде замкнутого по контуру канала 1, с размещенными в нем системой пневматической аэрации 2, подключаемой воздуховодами 3 к воздуходувному оборудованию с регулируемой подачей воздуха, погружной мешалкой с электродвигателем с частотным регулированием 4, узлом рассредоточенного впуска сточных вод 5, системой контроля концентрации растворенного кислорода и скорости потока продольной рециркуляции 6, а также встроенным двухсекционным вторичным отстойником, состоящим из полупогружной перегородки 7, первой секции 8 вторичного отстойника, с двумя зонами сбора и уплотнения активного ила, заканчивающимися выводящими отверстиями в биореактор 9, второй секции 10 вторичного отстойника, с приямком 11, к которому подведен илосос 12, а также из системы сбора и отвода очищенной сточной воды 13, при этом биореактор состоит из аэробной 14 и аноксидной 15 зон.
При этом высота вторичного отстойника составляет 1/3 от глубины канала биореактора, общая площадь вторичного отстойника составляет не более 21% от общей площади коридора биореактора, а размер отверстий в биореакторе составляет не более 15% от ширины коридора биореактора.
Установка биологической очистки сточных вод циркуляционного типа работает следующим образом. Основной принцип действия установки основан на известных процессах биологической очистки хозяйственно-бытовых сточных вод при участии смешанной культуры микроорганизмов, включающей в себя домены бактерий, архей и эукариотов, составляющей активный ил биореактора, осуществляющей в определенных эксплуатационных условиях процессы окисления органических веществ сточных вод, нитрификации, денитрификации и частично дефосфотации.
Хозяйственно бытовые сточные воды, предварительно прошедшие стадию очистки от минеральных примесей в песколовке, подаются в узел рассредоточенного впуска сточных вод 5, представляющий из себя переливной лоток, размещенный по всей ширине канала установки сразу после водосборного лотка вторичного отстойника. Поступающие сточные воды изначально попадают в зону действия погружной мешалки 4, что обеспечивает смешение циркулирующей иловой смесью. Также погружная мешалка обеспечивает поддержание горизонтальной скорости иловой смеси при продольной рециркуляции на уровне 0,25-0,3 м/с. Электродвигатель мешалки с частотным регулированием позволяет контролировать скорость потока и степень внутренней рециркуляции на уровне 500-600% в зависимости от расхода поступающих сточных вод. Внутренняя рециркуляция позволяет поддерживать активный ил во взвешенном состоянии при пониженной интенсивности аэрации в аэробной зоне биореактора 14, занимающей 30% объема биореактора и при отсутствии аэрации и дополнительного перемешивающего оборудования в аноксидной зоне биореактора 15, занимающей 70% объема биореактора. В аэробной зоне 14 концентрация растворенного кислорода поддерживается на уровне 0,85-1,2 мг/л, в аноксидной зоне 15 концентрация растворенного кислорода поддерживается на уровне 0,1-0,5 мг/л. Система пневматической аэрации 2, состоящая из мембранных аэраторов, воздухопроводов и задвижек подключается к воздуходувкам с регулируемым подачей воздуха, что позволяет регулировать концентрацию растворенного кислорода в обозначенном диапазоне в зависимости от параметров поступающих сточных вод для обеспечения требуемого качества очистки сточных вод. Контроль системы пневматической аэрации и горизонтальной скорости потока иловой смеси производится по данным мониторинга, поступающим с системы контроля концентрации растворенного кислорода и скорости потока продольной рециркуляции 6, состоящую из датчиков, расположенных в четырех сечениях по площади биореактора.
Сточная вода в иловой смеси последовательно проходит низкокислородные аэробные 14 и аноксидные 15 зоны. При этом осуществляется окисление органических веществ сточной воды, нитрификация и денитрификация азота. Процессы нитрификации и денитрификации протекают одновременно во всем объеме биореактора благодаря градиентам концентрации растворенного кислорода внутри крупных флокул активного ила. В крупных флокулах возможно образование аноксидных и анаэробных микрозон, тем самым процессы денитрификации возможны при наличии концентрации растворенного кислорода более 0,2 мг/л, используемой в классических технологиях.
Для формирования крупных флокул активного ила в установке применяется встроенный вторичный отстойник, занимающий 1/3 от глубины канала биореактора и не более 21% от общей площади коридора биореактора. Иловая смесь попадает в первую секцию вторичного отстойника 8, проходя под полупогружной перегородкой 7, опущенной в канал на глубину секции вторичного отстойника, после прохождения полупогружной установки скорость иловой воды, попадающей во вторичный отстойник значительно снижается и устанавливается в зависимости от расхода сточной воды на уровне 0,02 м/с. Время нахождения сточной воды в первой секции вторичного отстойника составляет не менее 20 минут, при этом в накопительную часть секции осаждаются крупные флокулы активного ила. Осевшие крупные флокулы активного ила возвращаются в биореактор через отверстия в нижней части секции 9. Размер отверстий составляет не более 15% от ширины коридора биореактора. После прохождения первой секции вторичного отстойника осветленная вода попадает во вторую секцию 10. В данной секции осаждается активный ил мелкой фракции, не осевший в первой секции. Осевший активный ил откачивается илососом 12 из приямка 11 по мере накопления (не реже 1 раза в сутки). Данная конструкция встроенного вторичного отстойника позволяет обеспечить накопление активного ила с преобладающими крупными размерами флокул и в перспективе создать условия для аэробной грануляции.
Таким образом, установка биологической очистки сточных вод циркуляционного типа позволяет достичь обозначенной цели, а именно осуществлять эффективную очистку сточных вод в том числе от соединений азота при низкокислородных условиях в биореакторес обеспечением энергоэффективности процесса, что проверено и подтверждено в ходе длительных экспериментов, выполненных с применением научного оборудования головного регионального центра коллективного пользования научным оборудованием и установками НИУ МГСУ.
название | год | авторы | номер документа |
---|---|---|---|
Способ глубокой биологической очистки сточных вод | 2021 |
|
RU2767110C1 |
БИОРЕАКТОР ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД | 2023 |
|
RU2812426C1 |
Способ глубокой биологической очистки сточных вод с процессом ANAMMOX биоценозом, иммобилизованным на ершовой загрузке | 2020 |
|
RU2749273C1 |
Автоматизированное устройство для очистки бытовых сточных вод | 2019 |
|
RU2711619C1 |
Способ биологической очистки жидких фракций, содержащих дезинфицирующее вещество ЧАМС и аналогичные ему совместно с хозяйственно-бытовыми и/или близкими к ним по составу производственными сточными водами | 2020 |
|
RU2743531C1 |
СПОСОБ И УСТАНОВКА ДЛЯ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД | 2016 |
|
RU2636708C1 |
Способ глубокой комплексной очистки высококонцентрированных по формам минерального азота и фосфора производственных и поверхностных сточных вод при низком содержании органических веществ | 2022 |
|
RU2794086C1 |
СПОСОБ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД ОТ АЗОТНО-ФОСФОРНЫХ И ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 2017 |
|
RU2644904C1 |
БАШЕННЫЙ БИОРЕАКТОР ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД | 1992 |
|
RU2019526C1 |
Блок биологической очистки сточных вод (варианты) и вторичный отстойник, использующийся в этом блоке (варианты) | 2022 |
|
RU2790712C1 |
Изобретение относится к области коммунального хозяйства и экологического строительства и используется для биологической очистки хозяйственно-бытовых и прочих близких к ним по составу сточных вод малых объемов при высокой неравномерности поступающих загрязнений. Установка биологической очистки сточных вод циркуляционного типа включает биореактор в виде замкнутого по контуру канала с размещенными в нем системой пневматической аэрации, подключаемой воздуховодами к воздуходувному оборудованию с регулируемой подачей воздуха, погружной мешалкой с электродвигателем с частотным регулированием, узлом рассредоточенного впуска сточных вод, системой контроля концентрации растворенного кислорода и скорости потока продольной рециркуляции, встроенным двухсекционным вторичным отстойником, состоящим из полупогружной перегородки, первой секции с двумя зонами сбора и уплотнения активного ила, заканчивающимися выводящими отверстиями в биореактор, второй секции с приямком, к которому подведен илосос, а также из системы сбора и отвода очищенной сточной воды. Биореактор состоит из аэробной и аноксидной зон. Высота вторичного отстойника составляет 1/3 от глубины канала биореактора, общая площадь вторичного отстойника составляет не более 21% от общей площади коридора биореактора, а размер отверстий в биореакторе составляет не более 15% от ширины коридора биореактора. Технический результат: обеспечивает очистку малых расходов сточных вод с глубоким удалением соединений азота при пониженных затратах на аэрацию и может использоваться в том числе для отработки технологических схем очистки сточных вод для средних и больших объемов. 1 з.п. ф-лы, 1 ил.
1. Установка биологической очистки сточных вод циркуляционного типа, включающая биореактор в виде замкнутого по контуру канала с размещенными в нем системой пневматической аэрации, подключаемой воздуховодами к воздуходувному оборудованию с регулируемой подачей воздуха, погружной мешалкой с электродвигателем с частотным регулированием, узлом рассредоточенного впуска сточных вод, системой контроля концентрации растворенного кислорода и скорости потока продольной рециркуляции, отличающаяся тем, что также содержит встроенный двухсекционный вторичный отстойник, состоящий из полупогружной перегородки, первой секции вторичного отстойника с двумя зонами сбора и уплотнения активного ила, заканчивающимися выводящими отверстиями в биореактор, второй секции вторичного отстойника с приямком, к которому подведен илосос, а также систему сбора и отвода очищенной сточной воды, при этом биореактор состоит из аэробной и аноксидной зон, при этом высота вторичного отстойника составляет 1/3 от глубины канала биореактора, общая площадь вторичного отстойника составляет не более 21% от общей площади коридора биореактора, а размер отверстий в биореакторе составляет не более 15% от ширины коридора биореактора.
2. Установка по п. 1, отличающаяся тем, что кислородные условия в биореакторе поддерживаются путем создания аэробной зоны с концентрацией растворенного кислорода 0,85-1,2 мг/л, занимающей 30% объема биореактора, и аноксидной зоны с концентрацией растворенного кислорода 0,1-0,5 мг/л, занимающей 70% объема биореактора.
Способ сжигания жидкого топлива в топках | 1948 |
|
SU80164A1 |
УСТАНОВКА ДЛЯ ГЛУБОКОЙ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД | 2003 |
|
RU2220918C1 |
СПОСОБ И УСТАНОВКА ДЛЯ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД | 2016 |
|
RU2636707C1 |
СТРОКОВЫТАЛКИВАЮЩЕЕ ПРИСПОСОБЛЕНИЕ ДЛЯ МАТРИЦЕ-НАБОРНЫХ И СТРОКООТЛИВНЫХ МАШИН | 1939 |
|
SU52397A1 |
US 5500112 A1, 19.03.1996 | |||
Устройство для стабилизации частоты автоколебаний в самонастраивающейся системе | 1972 |
|
SU457073A1 |
Авторы
Даты
2023-03-21—Публикация
2021-12-23—Подача