Способ получения низкотемпературного газа в газогенераторе Российский патент 2023 года по МПК B01J7/00 

Описание патента на изобретение RU2792896C1

Изобретение относится к прикладной химии, а именно к способу получения низкотемпературного газа в газогенераторе на твердом газогенерирующем веществе.

Указанные газогенераторы, являясь автономными, малогабаритными, быстродействующими, с длительными сроками и широким температурным диапазоном хранения и эксплуатации источниками газа с низкой температурой, предназначены для наддува оболочек аварийного и специального подъема разных объектов из глубин акваторий, для коррекции движения ракет с помощью вдува струи газа из газогенератора в сопловой части ракетного двигателя, для охлаждения выделяемыми газами носового обтекателя головной части ракеты, движущейся в атмосфере с гиперзвуковой скоростью, для вытеснения по определенному режиму жидких горючих из баков и подачи их в двигатель жидкостных ракет и во многих других областях.

Для использования в данных применениях требуются твердотопливные газогенераторы, имеющие не только низкую температуру генерируемых газов, но и позволяющие в процессе работы изменять расход газа в широких пределах (в разы и до десятков раз) и проводить неоднократные остановки и запуски.

К настоящему времени разработан ряд способов получения низкотемпературного газа в газогенераторах, основанных на самоподдерживающемся фильтрационном горении пористых газопроницаемых зарядов из газогенерирующих твердых топлив (патенты РФ №2108282, опубл. 10.04.1998, №2250800, опубл. 27.04.2005, №2435638, опубл. 10.12.2011). Перечисленные технические решения обладают следующими недостатками: позволяют получать с температурой близкой к нормальной только один инертный газ - азот, при этом требуют использование в качестве основного компонента азида натрия, являющегося дорогостоящим, дефицитным и токсичным веществом. Кроме того, запатентованные способы не позволяют в процессе работы изменять расход газа в широких пределах и проводить неоднократные остановки и запуски реализующих их газогенераторов. Указанные недостатки снижают эксплуатационные возможности известных способов, сужают диапазон областей их применения и номенклатуру устройств, в которых они могут быть использованы.

Из уровня техники известен также основанный на самоподдерживающемся фильтрационном горении пористых газопроницаемых зарядов из газогенерирующих твердых топлив и принятый за прототип способ получения низкотемпературного газа в газогенераторе по патенту РФ №2507149 (опубл. 20.02.2014), включающий процесс выделения горячего газа из пористого газопроницаемого газогенерирующего элемента, выполненного из твердого газогенерирующего вещества, пропускание выделенного газа через тело газогенерирующего элемента в направлении распространения зоны процесса, обеспечивающего выделение горячего газа, путем организации перепада давления между этой зоной и выходным отверстием газогенератора, охлаждение газа за счет теплообмена с твердым газогенерирующим веществом, задержание фильтром конденсированных продуктов.

Известный способ, по сравнению с аналогами, позволяет исключить использование в качестве основного компонента азида натрия и обеспечивает получение смеси холодных (с температурой близкой к нормальной) инертных газов (азота, диоксида углерода и парообразной воды).

При всех достоинствах способ по прототипу не позволяет в процессе работы воплощающего его газогенератора изменять расход газа в широких пределах и проводить неоднократные остановки и запуски газогенератора.

Недостатки известного способа исключают разработку многих устройств, для функционирования которых требуются газогенераторы с наличием указанных качеств, что снижает эксплуатационные возможности способа, сужает диапазон областей его применения и номенклатуру устройств, в которых он может быть использован.

Техническая проблема заключается в необходимости создания обладающего повышенными эксплуатационными возможностями, расширенными диапазоном областей применения и номенклатурой устройств, в которых он может быть использован, способа получения низкотемпературного газа в газогенераторе, позволяющего в процессе работы газогенератора регулировать расход газа в широких пределах и проводить неоднократные остановки и запуски газогенератора.

Технический результат - обеспечение возможности регулирования вплоть до прекращения процесса выделения горячего газа из пористого газопроницаемого газогенерирующего элемента по требуемому режиму.

Техническая проблема решается способом получения низкотемпературного газа в газогенераторе, включающим процесс выделения горячего газа из пористого газопроницаемого газогенерирующего элемента, выполненного из твердого газогенерирующего вещества, пропускание выделенного газа через тело газогенерирующего элемента в направлении распространения зоны процесса, обеспечивающего выделение горячего газа, путем организации перепада давления между этой зоной и выходным отверстием газогенератора, охлаждение газа за счет теплообмена с твердым газогенерирующим веществом, задержание фильтром конденсированных продуктов. Особенность заключается в том, что в качестве процесса, обеспечивающего выделение горячего газа, используют управляемое термическое разложение твердого газогенерирующего вещества, неспособного к самостоятельному горению, под воздействием тепловыделения от электрических нагревательных элементов, размещенных в газогенерирующем элементе, при этом управление расходом газа, фиксируемым датчиком, установленным на выходе из газогенератора, осуществляют путем управления термическим разложением твердого газогенерирующего вещества, основанным на регулировании мощности, подаваемой от источника электроэнергии к нагревательным элементам, или на регулировании числа задействованных нагревательных элементов.

В уровне техники отсутствует способ получения низкотемпературного газа в газогенераторе, в котором бы имело место предложенное сочетание существенных признаков, но именно такое сочетание обусловило решение существующей технической проблемы.

Предлагаемый способ получения низкотемпературного газа в газогенераторе иллюстрируется принципиальной схемой работы газогенератора (Фиг. ).

В корпусе 1 газогенератора (ГГ) размещают газогенерирующий элемент (ГГЭ) 2, нагревательные элементы 3 и фильтр 4 (перед выходным отверстием из ГГ). Нагревательные элементы 3 размещают равномерно по объему ГГЭ 2 и соединяют электроцепями 5 с устройством автоматического управления (УАУ) 6. В газоотводящем штуцере 7 газогенератора устанавливают датчик расхода газа 8 и соединяют его электроцепью 9 с УАУ 6. Устройство автоматического управления 6 связывают электроцепью 10 с источником электроэнергии 11, а электроцепью 12 (или иным способом) с внешним управляющим устройством (ВУУ) - условно не показано.

При подаче сигнала с ВУУ на включение газогенератора через электроцепь 12 на устройство автоматического управления 6, данное устройство включает подачу электроэнергии от источника электроэнергии 11 к одному или нескольким нагревательным элементам 3. Выделяемое нагревательными элементами 3 тепло нагревает прилегающий к ним слой твердого газогенерирующего вещества (ТГВ) газогенерирующего элемента 2, образуя зону 13 реакции разложения, в которой при достижении температуры на уровне 500-700 К (в зависимости от компонентного состава ТГВ), начинается реакция его термического разложения с образованием газа.

В процессе работы ГГ фронт 14 зоны 13 реакции разложения распространяется по телу газогенерирующего элемента 2 в направлениях 15.

Выделенный в зоне 13 реакции разложения ТГВ горячий газ за счет перепада давления между указанной зоной и выходным отверстием ГГ, ведущим к газоотводящему штуцеру 7, фильтруется через пористый, газопроницаемый материал твердого газогенерирующего вещества ГГЭ 2 и фильтр 4 в направлениях 16 к газоотводящему штуцеру 7.

Проходя через газогенерирующий элемент 2, газ охлаждается за счет расширения и теплопередачи в материал ГГЭ 2. Одновременно газ подогревает материал ГГЭ 2 перед фронтом 14 зоны 13 реакции разложения в направлении движения, уменьшая тем самым количество требуемого для передачи от нагревательных элементов 3 тепла для разложения последующий слоев материала газогенерирующего вещества ГГЭ 2.

Проходя через фильтр 4, газ очищается от примесей частиц ТГВ и конденсированных продуктов его разложения, дополнительно охлаждается за счет расширения и теплопередачи в материал фильтра 4, проходит в газоотводящий штуцер 7 и поступает к потребителю.

Датчик расхода газа 8 фиксирует расход газа и передает данные по электроцепи 9 на устройство автоматического управления 6. При отклонении расхода газа от заданного значения УАУ 6 автоматически изменяет (увеличивает или уменьшает) подачу электроэнергии от источника электроэнергии 11 к нагревательным элементам 3 или подключает (или отключает) часть нагревательных элементов 3, соответственно, увеличивается или уменьшается тепловыделение от нагревательных элементов 3 и газовыделение из ТГВ в зоне 13 реакции и, таким образом, изменяется расход газа по требуемому режиму.

При необходимости выключения ГГ по сигналу от внешнего управляющего устройства ВУУ, устройство автоматического управления 6 отключает подачу электроэнергии на все нагревательные элементы 3. Благодаря тому, что твердое газогенерирующее вещество не способно к самостоятельному горению, после отключения нагревательных элементов 3 и прекращения ими тепловыделения, прекращается реакция разложения ТГВ и, соответственно, выделение газа.

При необходимости повторного включения газогенератора по сигналу от внешнего управляющего устройства, процесс его запуска проходит по описанной выше схеме.

Для осуществления заявляемого способа газогенерирующий элемент 2 изготавливают из неспособного к самостоятельному горению, твердого газогенерирующего вещества (ТГВ), выделяющего при нагревании до 500-700 К индивидуальный газ или смесь газов, например, в виде пористого, газопроницаемого тела или в виде мелкодисперсных гранул.

Фильтр 4 изготавливают в виде прочного моноблока с газопроницаемостью равной или превышающей этот показатель газогенерирующего элемента 2, например в соответствии с патентом РФ №2584206, принадлежащим заявителю настоящей заявки.

Устройство автоматического управления 6 изготавливают как устройство, способное автоматически включать, выключать и изменять по заранее заданному или задаваемому во время работы газогенератора от внешнего управляющего устройства (ВУУ) режиму подачу электроэнергии от источника электроэнергии 11 к одному или нескольким из нагревательных элементов 3 и, таким образом, изменять тепловыделение от них и осуществлять управление газовыделением из газогенерирующего элемента 2 и расходом газа из газогенератора.

Для иллюстрации осуществимости заявляемого способа в Таблице приведены характеристики работы газогенераторов при использовании разных типов твердых газогенерирующих веществ (ТГВ): тип №1 - на основе нитрата аммония, оксалата аммония и силиката натрия; тип №2 - на основе нитрата гуанидина, оксалата аммония, динитрамида аммония и силиката натрия. Выбор компонентов для твердых газогенерирующих веществ не ограничивается приведенными в Таблице примерами. В качестве таковых могут быть использованы (с не меньшей эффективностью) и другие ТГВ, не способные к самостоятельному горению.

Использованные в экспериментах газогенерирующие элементы имели коэффициент газопроницаемости - на уровне (0,5-4)⋅10-10 м2. Масса газогенерирующих элементов в опытах составляла 1 кг. Эти показатели справедливы как для ГГЭ в виде твердого тела, так и для ГГЭ в виде мелкодисперсных гранул.

В ГГЭ равномерно по объему устанавливали 2 нагревательных элемента мощностью по 0,6 кВт. В качестве источника энергии использованы 3 соединенные последовательно малогабаритных аккумулятора марки LFP72-6-30Р6 (емкость 6 А⋅ч, напряжение 72 В). В некоторых экспериментах использовали 4 нагревательных элемента, равномерно распределенных по объему ГГЭ мощностью по 0,6 кВт. При этом количество вышеуказанных аккумуляторов увеличивали вдвое. Количество задействованных элементов выбирают в зависимости от теплоты разложения конкретного состава ТГВ, используемого при осуществлении заявляемого способа, и требуемых режимов газовыделения.

Устройство автоматического управления УАУ, состоящее из электронного процессора и устройства автоматического регулирования подачи электроэнергии от источника электроэнергии к нагревательным элементам, изготовлено из выпускаемых промышленностью элементов. Для измерения расхода газа в газогенераторе использован датчик расхода воздуха F1031-В-А-50 с пределами измерений 1-50 л/мин.

Проведенный сопоставительный анализ показывает, что заявляемый способ, хотя и совпадает с прототипом по ряду действий и достигаемому с его помощью уровню основных показателей газогенератора, но существенно отличается от него возможностью управления процессом работы газогенератора, а именно, возможностью неоднократного изменения расхода газа в несколько раз и выключения и повторного включения газогенератора в процессе его работы. Прототип и аналоги не позволяют проводить такие операции.

Воплощение заявляемого способа предполагает применение используемых в настоящее время в технике оборудования и материалов.

Заявляемый способ экспериментально апробирован при испытаниях модельных газогенераторов на основе различных ТГВ, результаты которых подтвердили его практическую осуществимость.

Предлагаемое техническое решение является актуальным, позволяет удовлетворить давно существующую потребность в решении обозначенной технической проблемы.

Похожие патенты RU2792896C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ГАЗОГЕНЕРИРУЮЩЕГО ЭЛЕМЕНТА ДЛЯ НИЗКОТЕМПЕРАТУРНОГО ГАЗОГЕНЕРАТОРА 2013
  • Жарков Александр Сергеевич
  • Певченко Борис Васильевич
  • Пилюгин Леонид Александрович
  • Пилюгин Александр Леонидович
  • Никитин Роман Геннадьевич
  • Шандаков Владимир Алексеевич
  • Карбанов Сергей Дмитриевич
RU2524388C1
СПОСОБ ПОЛУЧЕНИЯ ХОЛОДНЫХ ИНЕРТНЫХ ГАЗООБРАЗНЫХ ПРОДУКТОВ СГОРАНИЯ ТВЕРДОТОПЛИВНОГО ЗАРЯДА В ГАЗОГЕНЕРАТОРЕ 2012
  • Жарков Александр Сергеевич
  • Певченко Борис Васильевич
  • Пилюгин Леонид Александрович
  • Пилюгин Александр Леонидович
  • Шандаков Владимир Алексеевич
RU2507149C1
СПОСОБ ГЕНЕРИРОВАНИЯ ГАЗОВ, ПРЕДПОЧТИТЕЛЬНО АЗОТА, С НИЗКОЙ ТЕМПЕРАТУРОЙ И ГАЗОГЕНЕРАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Жарков А.С.
  • Шандаков В.А.
  • Борочкин В.П.
  • Пилюгин Л.А.
  • Комаров В.Ф.
RU2250800C2
ГЕНЕРАЦИЯ НИЗКОТЕМПЕРАТУРНОГО ГАЗА ИЗ ТВЕРДОГО ТОПЛИВА 1997
  • Сысоев Н.Н.
  • Борочкин В.П.
  • Шандаков В.А.
  • Розанов В.В.
  • Трофимов М.М.
  • Орлов Л.Г.
RU2174437C1
Газогенерирующее устройство 2016
  • Панкратьев Николай Александрович
  • Зорин Юрий Владимирович
  • Горбачева Елена Олеговна
  • Воронин Сергей Викторович
RU2640466C2
ГАЗОГЕНЕРАТОР 1999
  • Воронцов А.М.
  • Леваков Е.В.
  • Решетников В.Н.
RU2179471C2
ГАЗОГЕНЕРАТОР ХОЛОДНОГО АЗОТА 2010
  • Пилюгин Леонид Александрович
  • Полящук Владимир Викторович
  • Шумский Александр Константинович
  • Карбанов Сергей Дмитриевич
  • Пилюгин Александр Леонидович
RU2808019C1
ГАЗОГЕНЕРИРУЮЩЕЕ УСТРОЙСТВО 2000
  • Груздев А.Г.
  • Гудок Т.Н.
  • Жарков А.С.
  • Кривенко В.Ф.
  • Мурашов Ю.М.
  • Никитин Д.Н.
  • Орионов Ю.Е.
  • Осипков В.Н.
  • Росторгуев А.Н.
  • Саламатов В.М.
  • Тараненко А.С.
  • Хабаров В.А.
  • Шейтельман Г.Ю.
RU2211063C2
УСТРОЙСТВО ГАЗОВОГО ПОЖАРОТУШЕНИЯ 2012
  • Груздев Александр Геннадьевич
  • Жданов Петр Васильевич
  • Неверов Константин Анатольевич
  • Кайдалов Валерий Васильевич
  • Кучин Денис Вячеславович
  • Морозов Александр Владимирович
  • Осипков Валерий Николаевич
  • Шейтельман Геннадий Юрьевич
RU2495695C1
ГАЗОГЕНЕРАТОР ХОЛОДНОГО АЗОТА 2010
  • Пилюгин Леонид Александрович
  • Полящук Владимир Викторович
  • Шумский Александр Константинович
  • Карбанов Сергей Дмитриевич
  • Пилюгин Александр Леонидович
RU2435638C1

Иллюстрации к изобретению RU 2 792 896 C1

Реферат патента 2023 года Способ получения низкотемпературного газа в газогенераторе

Изобретение относится к прикладной химии, а именно к способу получения низкотемпературного газа в газогенераторе на твердом газогенерирующем веществе. Способ включает управляемое термическое разложение твердого газогенерирующего вещества, неспособного к самостоятельному горению, под воздействием тепловыделения от электрических нагревательных элементов, размещенных в газогенерирующем элементе. При этом управление расходом газа, фиксируемым датчиком, установленным на выходе из газогенератора, осуществляют путем управления термическим разложением твердого газогенерирующего вещества, основанным на регулировании мощности, подаваемой от источника электроэнергии к нагревательным элементам, или на регулировании числа задействованных нагревательных элементов. Техническим результатом изобретения является обеспечение возможности регулирования вплоть до прекращения процесса выделения горячего газа из пористого газопроницаемого газогенерирующего элемента. 1 ил., 1 табл.

Формула изобретения RU 2 792 896 C1

Способ получения низкотемпературного газа в газогенераторе, включающий процесс выделения горячего газа из пористого газопроницаемого газогенерирующего элемента, выполненного из твердого газогенерирующего вещества, пропускание выделенного газа через тело газогенерирующего элемента в направлении распространения зоны процесса, обеспечивающего выделение горячего газа, путем организации перепада давления между этой зоной и выходным отверстием газогенератора, охлаждение газа за счет теплообмена с твердым газогенерирующим веществом, задержание фильтром конденсированных продуктов, отличающийся тем, что в качестве процесса, обеспечивающего выделение горячего газа, используют управляемое термическое разложение твердого газогенерирующего вещества, неспособного к самостоятельному горению, под воздействием тепловыделения от электрических нагревательных элементов, размещенных в газогенерирующем элементе, при этом управление расходом газа, фиксируемым датчиком, установленным на выходе из газогенератора, осуществляют путем управления термическим разложением твердого газогенерирующего вещества, основанным на регулировании мощности, подаваемой от источника электроэнергии к нагревательным элементам, или на регулировании числа задействованных нагревательных элементов.

Документы, цитированные в отчете о поиске Патент 2023 года RU2792896C1

СПОСОБ ПОЛУЧЕНИЯ ХОЛОДНЫХ ИНЕРТНЫХ ГАЗООБРАЗНЫХ ПРОДУКТОВ СГОРАНИЯ ТВЕРДОТОПЛИВНОГО ЗАРЯДА В ГАЗОГЕНЕРАТОРЕ 2012
  • Жарков Александр Сергеевич
  • Певченко Борис Васильевич
  • Пилюгин Леонид Александрович
  • Пилюгин Александр Леонидович
  • Шандаков Владимир Алексеевич
RU2507149C1
Способ подсочки деревьев 1929
  • Любарский Е.И.
SU20857A1
ГЕНЕРАТОР ВОДОРОДА ТРАНСПОРТНОЙ ЭНЕРГОУСТАНОВКИ 2003
  • Челяев В.Ф.
  • Глухих И.Н.
  • Щербаков А.Н.
  • Аракелов А.Г.
  • Михайлов В.И.
  • Кашинкин В.П.
RU2243147C1
УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ДЕФЕКТОВ В МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЯХ 1940
  • Геккер В.В.
SU60508A1
АКТИВИРУЮЩАЯ СТРУКТУРА, АППАРАТ ДЛЯ АКТИВАЦИИ ВЕЩЕСТВА И СПОСОБ АКТИВАЦИИ ВЕЩЕСТВА 2002
  • Китада Масайоси
RU2264854C2
Кириллов В.В
"Скорость разложения твердых охладителей", Вестник ИжГТУ, 2008, N 4, стр.42-43
JP 2001334906 A, 04.12.2001
Палатка 1983
  • Ракша Иван Афанасьевич
SU1208162A1

RU 2 792 896 C1

Авторы

Пилюгин Леонид Александрович

Певченко Борис Васильевич

Никитин Роман Геннадьевич

Зяблицкий Сергей Анатольевич

Хорунжая Юлия Сергеевна

Пилюгина Маргарита Александровна

Даты

2023-03-28Публикация

2022-07-19Подача