Настоящее изобретение относится к гидрометаллургии рения, в частности к способу сорбционного извлечения рения активными углями из водных растворов и может быть использовано для переработки растворов подземного выщелачивания урана, сбросных растворов, ренийсодержащих полупродуктов и других объектов.
Известен адсорбционный способ извлечения рения с использованием активных углей марок КАД, БАУ из водных растворов в интервале рН 2-12 [Лебедев К.Б. Рений. М.: Металлургиздат, 1963. 208 с.]. После сорбции рения из сернокислых растворов осуществляют десорбцию рения 1-3 %-ными растворами соды или аммиака при повышенной до 90°C температуре.
Известен также адсорбционный способ извлечения рения активным углем ФАС на основе синтетического полимера, а также углями на основе отходов дерево- и зерноперерабатывающей промышленности [Трошкина И.Д., Ушанова О.Н., Пьо Шве Хла и др. Извлечение рения из сернокислых растворов активными углями // Изв. Вузов. Цв. металлургия. 2005. № 3. С. 38-41].
К недостаткам вышеуказанных способов относится повышенная температура проведения десорбции рения щелочными растворами.
Известен способ извлечения рения, основанный на применении активных углей для адсорбции рения из растворов с pH 6,0-7,5 (Патент СРР № 98782, МКИ C 01 G 47/00; C 22 B 61/00. Способ извлечения рения из раствора, образующегося при гидрометаллургии молибдена. Procedeu de recuperare a renium du solution reziduale de la hidrometalurgi a mlibdenite. Turcu Eleonora, Turcu Dorian. Intreprinderea miniera, Moldova Noua N 130488. Заявл. 18.11.87. опубл. 28.02.90). Недостатками этого метода являются низкие емкости по рению, трудности при осуществлении десорбции рения, которая происходит при помощи спиртоаммиачных смесей.
Известен способ извлечения рения активным углем с нанесенным на него комплексообразователем - метиленовым голубым [Кобжасов А.А., Палант А.А. Металлургия рения: Учебник для вузов. Алма-Ата. 1992. 161 с.]. Недостатком этого способа являются потери метиленового голубого при эксплуатации, проведение дополнительных операций для получения товарного продукта рения - перрената аммония, что приводит к снижению эффективности сорбционного извлечения рения.
Полученные после десорбции растворы содержат 0,2-0,5 г/л рения. Дальнейшее концентрирование растворов проводят выпариванием или повторной сорбцией на угле. Из растворов можно осаждать перренат калия.
Наиболее близким по технической сущности и достигаемому результату при использовании является способ извлечения рения из водных растворов активным углем (марки ВСК) с высокой удельной поверхностью [Вей Мое Аунг, Марченко М.В., Трошкина И.Д. Адсорбция рения из сернокисло-хлоридных растворов активированными углями различного происхождения // Успехи в химии и химической технологии. М.: РХТУ им. Д. И. Менделеева. 2019. Т. 33. № 9 (219). С. 40-42.] (прототип).
Недостатком этого способа является низкая степень десорбции рения при комнатной температуре (~10 %). Это приводит к необходимости повышения температуры до 90°C, что сопровождается ростом энергозатрат, увеличением расходов на оборудование для элюирования рения при такой температуре.
Технической задачей предлагаемого изобретения является повышение степени десорбции рения, осуществляемой при комнатной температуре.
Технический результат достигается тем, что сорбцию рения из водных растворов с последующей десорбцией осуществляют на активном угле, модифицированном органическим полимером - фторопластом в количестве 0,15-3,0 %.
Использование в качестве модификатора активного угля - фторопласта, приводит к блокировке активных центров угля, что облегчает осуществление десорбции рения, и повышению степени десорбции рения в 7-8 раз по отношению к прототипу. Уголь сорбирует из водного раствора, затем рений десорбируют с поверхности угля.
При содержании модификатора менее 0,15 % уменьшается степень десорбции по рению. Увеличение содержания модификатора выше 3,0 % приводит к частичной агломерации адсорбента. При других условиях осуществления процесса технический результат не достигается.
Использование предлагаемого адсорбента позволяет получить более концентрированный элюат при комнатной температуре по сравнению с прототипом.
Осуществление процесса извлечения рения из водных растворов иллюстрируют следующие примеры.
Пример 1.
Для сорбции рения из сернокислого раствора, содержащего, мг/л: 20 рения, 10000 сульфат-ионов, 1000 хлорид-ионов, pH 2,0 используют модифицированный активный уголь, содержащий 0,148 % фторопласта 42-В (ВСК-ФП-1). Для сравнения сорбцию рения из того же раствора осуществляют на активном угле ВСК (прототип). Сорбцию рения осуществляют в статических условиях в течение 8 ч при постоянном механическом перемешивании, соотношении объемов раствора и активного угля 500:1 (мл:г ) и температуре 22°С. По балансовому соотношению с учетом концентрации металлов в исходном и конечном растворах определяют емкость адсорбента по рению (таблица 1).
После сорбции проводят промывку угля водой при соотношении фаз вода : уголь, равном 5 : 1 (3 контакта) в течение 5 минут при температуре 22°С описать и десорбцию рения в статических условиях в течение 8 ч при постоянном механическом перемешивании, соотношении объемов раствора и угля 50:1 (мл:г) и температуре 22°С. По балансовому соотношению определяют концентрацию в элюате и степень десорбции рения (таблица 1).
по рению, мг/г
контакта
десорбции
2
3
34
14,9
18,6
8,0
∑ 87,9
2
3
6,1
4,7
3,2
2,5
∑ 11,7
Пример 2.
Для сорбции рения из сернокислого раствора, содержащего, мг/л: 20 рения, 10000 сульфат-ионов, 1000 хлорид-ионов, pH 2,0 используют модифицированный активный уголь, содержащий 1,005 % фторопласта 42-В (ВСК-ФП-2). Сорбцию и десорбцию рения осуществляют в условиях, описанных в примере 1. Результаты представлены в таблице 2.
контакта
десорбции
2
3
70,3
6,4
37,8
3,4
∑ 99,2
2
3
6,1
4,7
3,2
2,5
∑ 11,7
Пример 3.
Для сорбции рения из сернокислого раствора, содержащего, мг/л: 20 рения, 10000 сульфат-ионов, 1000 хлорид-ионов, pH 2,0 используют модифицированный активный уголь, содержащий 3,01 % фторопласта 42-В (ВСК-ФП-3). Сорбцию и десорбцию рения осуществляют в условиях, описанных в примере 1. Результаты представлены в таблице 3.
по рению, мг/г
контакта
десорбции
2
3
44,6
7,7
23,5
4,1
∑ 99,9
2
3
6,1
4,7
3,2
2,5
∑ 11,7
Пример 4. Для сорбции рения из сернокислого раствора, содержащего, мг/л: 20 рения, 10000 сульфат-ионов, 1000 хлорид-ионов, pH 2,0 используют модифицированный активный уголь, содержащий 0,551 % фторопласта поливинилиденфторида (ПВДФ) (фторопласт Т-2М, марка «В») (ВСК-ПВДФ). Сорбцию и десорбцию рения осуществляют в условиях, описанных в примере 1. Результаты представлены в таблице 4.
рению, мг/г
контакта
десорбции
2
3
36,0
8,24
17,0
3,4
∑ 76,8
2
3
6,1
4,7
3,2
2,5
∑ 11,7
Пример 5.
Для сорбции рения из сернокислого раствора, содержащего, мг/л: 20 рения, 10000 сульфат-ионов, 1000 хлорид-ионов, pH 2,0 используют модифицированный активный уголь, содержащий 0,472 % фторопласта 42-В (ПФТ-ФП). Сорбцию и десорбцию рения осуществляют в условиях, описанных в примере 1. Результаты представлены в таблице 5.
рению, мг/г
контакта
десорбции
2
3
38,5
12,8
20,0
6,7
∑ 97,7
2
3
6,1
4,7
3,2
2,5
∑ 11,7
Использование модифицированного активного угля ВСК содержащего 0,15-3 % фторопласта, позволяет не только улучшить десорбцию рения и повысить концентрацию товарного рениевого элюата, но и снизить расход сорбента благодаря его повышенной механической прочности по отношению к используемым углям.
Модифицированный фторопластом активный уголь, в сравнении с прототипом, обладает значительно лучшими сорбционно-десорбционными характеристиками, что обеспечивает:
- высокую степень десорбции рения при комнатной температуре;
- более высокую концентрацию товарного элюата рения.
Вышеперечисленное позволяет улучшить технико-экономические показатели сорбционно-десорбционного извлечения рения из водных растворов - сокращение расхода сорбента для извлечения рения из водных растворов; - уменьшение температуры десорбции, ликвидацию десорбционного технологического оборудования, работающего при повышенных температурах.
Результаты получены с использованием оборудования ЦКП РХТУ им. Д. И. Менделеева.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ АКТИВИРОВАННЫМ УГЛЕМ ИЗ ВОДНЫХ РАСТВОРОВ | 2022 |
|
RU2802918C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ УРАНСОДЕРЖАЩИХ РАСТВОРОВ | 2012 |
|
RU2523892C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ УРАНОВЫХ РАСТВОРОВ | 2016 |
|
RU2627838C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ | 2005 |
|
RU2294391C1 |
СПОСОБ ДЕСОРБЦИИ РЕНИЯ | 2003 |
|
RU2258756C2 |
СПОСОБ РАЗДЕЛЕНИЯ РЕНИЯ И МОЛИБДЕНА ПРИ ПОМОЩИ НИЗКООСНОВНОГО АНИОНИТА ПОРИСТОЙ СТРУКТУРЫ | 1996 |
|
RU2096333C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ СОРБЦИОННОЙ ОЧИСТКИ ВОЗДУХА ОТ ЛЕТУЧИХ ФОРМ РАДИОАКТИВНОГО ИОДА | 2019 |
|
RU2717818C1 |
Серебросодержащий сорбент для анионных форм радиоактивного иода | 2022 |
|
RU2801938C1 |
СПОСОБ ДЕСОРБЦИИ РЕНИЯ | 2001 |
|
RU2184788C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ РУД И ПРОДУКТОВ ИХ ПЕРЕРАБОТКИ | 2012 |
|
RU2490344C1 |
Изобретение относится к сорбционной гидрометаллургии рения и может быть использовано для извлечения рения из водных растворов. Извлечение рения из растворов включает сорбцию рения на активном угле, его промывку и десорбцию рения. В качестве активного угля используют активный уголь, модифицированный фторопластом, с содержанием фторопласта 0,15-3,0%. Изобретение позволяет повысить степень десорбции рения. 5 табл., 5 пр.
Способ извлечения рения активным углем из растворов, включающий сорбцию рения на активном угле, его промывку, десорбцию рения, отличающийся тем, что в качестве активного угля используют активный уголь, модифицированный фторопластом, с содержанием фторопласта 0,15-3,0%.
ТРОШКИНА И.Д | |||
и др | |||
Сорбционное извлечение микроколичеств рения из промывной серной кислоты | |||
Цветные металлы, 2000, N9, c | |||
Халат для профессиональных целей | 1918 |
|
SU134A1 |
Круглая пила со вставными зубцами | 1933 |
|
SU34132A1 |
Сорбент на основе активированного угля | 1975 |
|
SU575124A1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ РЕНИЯ (VII) ИЗ ВОДНОГО РАСТВОРА | 2009 |
|
RU2405847C2 |
СПОСОБ ИНКАПСУЛЯЦИИ ГРАНУЛ УГЛЕРОДНЫХ СОРБЕНТОВ ПЛЕНКОЙ ФТОРОПЛАСТА | 2006 |
|
RU2414292C2 |
Машина для сортировки шпуль по длине | 1930 |
|
SU23859A1 |
US 2013276586 A1, 24.10.2013. |
Авторы
Даты
2023-05-29—Публикация
2022-10-05—Подача