Электролитно-плазменный способ получения газообразного водорода в газожидкостной среде Российский патент 2023 года по МПК C01B3/02 C25B9/17 C25B9/70 

Описание патента на изобретение RU2796822C1

Изобретение относится к способам получения водорода. Водород практически не встречается на земле в чистом виде и должен извлекаться из других соединений.

Разнообразие способов получения водорода является одним из главных преимуществ водородной энергетики. В настоящее время наиболее доступным и дешевым процессом является паровая конверсия метана и природного газа и угля, но запасов природного газа и метана остается мало. Согласно прогнозам, паровая конверсия будет использована только в начальной стадии перехода к водородной экономике.

Известен способ синтеза газообразного водорода плазменным разрядом в жидкофазных средах под действием ультразвуковой кавитации (Булычев Н.А., Казарян М.А., Этираи А., Чайков Л.Л. Плазменный разряд в жидкофазных средах под действием ультразвуковой кавитации как метод синтеза газообразного водорода // Краткие сообщения по физике ФИАН. 2018. №9). Плазма способна эффективно разлагать водородосодержащие молекулы органических соединений с образованием газообразных продуктов, в которых доля водорода составляет более 90%, а уровень КПД порядка 60-70% в зависимости от состава исходной смеси. Однако этот процесс требует громоздкого и дорогого оборудования, а также потребляет метан, который сам является топливом и ценным сырьем для химической промышленности.

Аналогом способа можно признать (RU, патент 117441 U1) электролитно-плазменный способ получения газообразного водорода в газожидкостной среде, характеризующийся тем, что разряд горит в диэлектрических сосудах, соединенных между собой трубкой в нижней части, отличающийся тем, что анод имеет пластинчатую форму, а катод имеет спиралевидную форму с диэлектрическим покрытием, причем электроизоляция снята ступенчато, благодаря чему, как утверждают заявители увеличивается срок службы катода. Недостатком заявленного способа является сложность в изготовлении катода и быстрое изнашивание электроизоляции в результате горения электрического разряда высокой температуры.

Техническим результатом электролитно-плазменного способа получения газообразного водорода в газожидкостной среде является увеличение синтеза

водорода за счет создания усиленного газообразования на искусственно созданной неровной поверхности электродов.

Технический результат в предлагаемом электролитно-плазменном способе получения газообразного водорода достигается тем, что в газожидкостной среде, содержащей катод и анод, размещенные в диэлектрических сосудах, которые соединены между собой в нижней части диэлектрической трубкой, согласно настоящему изобретению, катод и анод имеют искусственно созданную неровную поверхность зигзагообразной формы, которая после электрического пробоя и ударной волны вызывает усиленное газообразование в электролите с интенсивным выделением водорода, характеризующийся тем, что горит электрический разряд в межэлектродном промежутке от 50-150 мм, с небольшими пульсациями тока от 0 до 10 А и напряжения от 400 до 1300 В, сосуды в верхней части снабжены системой отбора водорода и кислорода, а также клапанами регулировки давления в сосудах и системой слива и подачи электролита, причем в качестве электролита используют водные растворы щелочей активных металлов.

Рассмотрим осуществление предлагаемого электролитно-плазменного способа получения газообразного водорода в газожидкостной среде (фиг. 1). На электроды 3 и 4 (анод и катод), размещенные в диэлектрических сосудах 1, которые соединены между собой в нижних частях диэлектрической трубкой 2, причем катод и анод имеют искусственно созданную неровную поверхность зигзагообразной формы, подается напряжение от источника постоянного тока и после электрического пробоя вызывается усиленное газообразование в электролите с интенсивным выделением водорода. Электрический разряд 5 горит в межэлектродном промежутке от 50-150 мм с небольшими пульсациями тока от 0 до 10 А и напряжения от 400 до 1300 В, подачу и слив электролита осуществляют с помощью кранов 6 и 7, выход газообразных продуктов через систему отбора кислорода и водорода 8, в верхней части сосудов расположены клапаны 9 для регулировки давления. Заполнение электролитом происходит не менее чем на 50 % от объема сосудов, но не более чем на 80 %, причем в качестве электролита используют водные насыщенные растворы щелочей активных металлов.

Осуществление предлагаемого электролитно-плазменного способа получения газообразного водорода в газожидкостной среде гидроксида натрия (NaOH) выглядит следующим образом:

2H2O+2e=2H2+2OH- реакция на катоде,

4OH-4e=O2+2H2О- реакция на аноде.

Отличительной особенностью данного способа является то, что электрические разряды с микропузырьками в электролитных ячейках повышают получение водорода, чем при электролизе.

Необходимо отметить, что схема с раздельным сбором газообразных продуктов на выходе из катода и анода позволяет собрать не только водород, но и кислород, получающийся попутно в данном способе.

Для достижения технического результата предлагается эксперимент с использованием 10 % раствора NaOH и медных электродов с высотой зигзага 3 мм. Для анализа устойчивости электрического разряда была получена вольт-амперная характеристика (фиг.2) разряда с помощью универсального аналого-цифрового преобразователя Sensor-CASSY, представленные на фиг.2. Анализ вольт-амперной характеристики показал, что процесс электролиза идет при силе тока от 4 до 10 А и напряжении от 400 до 700 В. Затем при достижении пробойного напряжения (700 В) горит разряд с небольшими пульсациями тока ( от 0 до 10 А) и напряжения (от 400 В до 1300 В). Наличие такого разряда при соприкосновении с зигзагообразной формы электродов приводит к усиленному газообразованию. Такой разряд с развитой поверхностью микропузырьков приводит к увеличению диффузионных потоков химически активных веществ, растворенных в электролите, в том числе водорода и кислорода. В таком разряде потенциально возможно осуществить большое количество новых химических реакций при условии поступления свежего электролита в ячейку.

Таким образом, получение технического результата достигается за счет плазмы электрического разряда (разложение и ионизация молекул) и усиливается при увеличении газообразования за счет неровной зигзагообразной формы электродов (ускорение реакции получения газообразных продуктов водорода, кислорода и диффузии).

Существенным преимуществом способа является отсутствие токсичных и трудноутилизируемых продуктов, а также дополнительное получение кислорода.

Похожие патенты RU2796822C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ СВАРКИ ИЗДЕЛИЙ ИЗ АЛЮМИНИЯ ИЛИ ЕГО СПЛАВОВ СО СТАЛЬЮ 2020
  • Гайсин Алмаз Фивзатович
  • Багаутдинова Лилия Наилевна
  • Гайсин Азат Фивзатович
  • Гайсин Фивзат Миннебаевич
RU2790853C2
Способ электролитно-плазменной сварки цветных металлов и их сплавов 2020
  • Гайсин Азат Фивзатович
  • Гайсин Алмаз Фивзатович
  • Багаутдинова Лилия Наилевна
  • Гайсин Фивзат Миннебаевич
  • Мастюков Шамиль Чингизович
RU2751500C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА 2011
  • Гайсин Алмаз Фивзатович
RU2457571C1
СПОСОБ ПОЛУЧЕНИЯ ОЗОНА 2011
  • Гайсин Алмаз Фивзатович
  • Садриев Рамиль Шамилевич
RU2478082C1
СПОСОБ УПРОЧНЕНИЯ ИЗДЕЛИЯ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2006
  • Гайсин Азат Фивзатович
RU2335551C2
Способ получения электрического разряда (варианты) 2015
  • Гайсин Алмаз Фивзатович
  • Абдуллин Ильдар Шаукатович
RU2626010C2
СПОСОБ ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОЙ ОБРАБОТКИ ИЗДЕЛИЙ, ИЗГОТОВЛЕННЫХ С ПРИМЕНЕНИЕМ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2015
  • Гайсин Алмаз Фивзатович
  • Гильмутдинов Альберт Харисович
RU2621744C2
СПОСОБ ПОЛУЧЕНИЯ МНОГОКАНАЛЬНОГО РАЗРЯДА (ВАРИАНТЫ) 2006
  • Гайсин Азат Фивзатович
RU2317610C1
СПОСОБ ОЧИСТКИ И ПОЛИРОВКИ ПОВЕРХНОСТИ ИЗДЕЛИЯ (ВАРИАНТЫ) 2006
  • Гайсин Азат Фивзатович
RU2324769C2
СПОСОБ ПЛАЗМЕННО-АКУСТИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ 2018
  • Гильмутдинов Альберт Харисович
  • Гайсин Алмаз Фивзатович
RU2675612C1

Иллюстрации к изобретению RU 2 796 822 C1

Реферат патента 2023 года Электролитно-плазменный способ получения газообразного водорода в газожидкостной среде

Изобретение относится к электролитно-плазменному способу получения газообразного водорода в газожидкостной среде, содержащей катод и анод, размещенные в диэлектрических сосудах, которые соединены между собой в нижней части диэлектрической трубкой. Способ характеризуется тем, что катод и анод имеют искусственно созданную неровную поверхность зигзагообразной формы, которая после электрического пробоя и ударной волны вызывает усиленное газообразование в электролите с интенсивным выделением водорода, характеризуется тем, что горит электрический разряд в межэлектродном промежутке от 50-150 мм с небольшими пульсациями тока от 0 до 10 А и напряжения от 400 до 1300 В, сосуды в верхней части снабжены системой отбора водорода и кислорода, а также клапанами регулировки давления в сосудах и системой слива и подачи электролита, причем в качестве электролита используют водные растворы щелочей активных металлов. Использование предлагаемого способа позволяет увеличить синтез водорода за счет создания усиленного газообразования на искусственно созданной неровной поверхности электродов. 2 ил.

Формула изобретения RU 2 796 822 C1

Электролитно-плазменный способ получения газообразного водорода в газожидкостной среде, содержащей катод и анод, размещенные в диэлектрических сосудах, которые соединены между собой в нижней части диэлектрической трубкой, отличающийся тем, что катод и анод имеют искусственно созданную неровную поверхность зигзагообразной формы, которая после электрического пробоя и ударной волны вызывает усиленное газообразование в электролите с интенсивным выделением водорода, характеризующийся тем, что горит электрический разряд в межэлектродном промежутке от 50-150 мм с небольшими пульсациями тока от 0 до 10 А и напряжения от 400 до 1300 В, сосуды в верхней части снабжены системой отбора водорода и кислорода, а также клапанами регулировки давления в сосудах и системой слива и подачи электролита, причем в качестве электролита используют водные растворы щелочей активных металлов.

Документы, цитированные в отчете о поиске Патент 2023 года RU2796822C1

Устройство для определения зависимости обратного тока полупроводникового выпрямителя от степени его нагрева при работе в цепи переменного тока 1957
  • Абдулаев Абдул-Мабут Абдул Манаф Оглы
SU117441A1
RU 2005133099 A, 10.05.2007
RU 2010123943 A, 20.12.2011
JP 2004059977 A, 26.02.2004
WO 2008141369 A1, 27.11.2008.

RU 2 796 822 C1

Авторы

Гайсин Азат Фивзатович

Гайсин Алмаз Фивзатович

Багаутдинова Лилия Наилевна

Гайсин Фивзат Миннебаевич

Даты

2023-05-29Публикация

2022-07-12Подача