Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.
Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (А.С. 174005, кл. G 01 k N 421, 951, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатком этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.
Наиболее близким является способ определения коэффициента диффузии в листовых капиллярно-пористых материалах (патент РФ на изобретение № 2756665, G01N 13/00, G01N 15/082 04.10.2021, Бюл. № 28), заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигналов двух гальванических преобразователей, расположенных на разных расстояниях r1 и r2 от точки нанесения импульса дозой растворителя, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E1 и второго датчика E2 из диапазона (0,7 – 0,9) Ee на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков и рассчитывают коэффициент диффузии по установленной зависимости, где Ee - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.
Недостатками этого способа являются:
1. Низкая чувствительность и нестабильность работы применяемых гальванических преобразователей при недостаточной дозе вносимого растворителя при импульсном воздействии по сравнению с требуемым (заранее неизвестным), что делает невозможным применение данного метода. При измерении коэффициента диффузии по данному способу существует большая вероятность того, что получаемые в эксперименте кривые изменения сигналов во времени обоих гальванических преобразователей или одного - наиболее удаленного от точки нанесения импульсного воздействия (фигура 1, кривая 2), могут находиться на начальном участке статической характеристики гальванического преобразователя в области малых концентраций с нестабильным сигналом.
2. Низкая точность измерения искомого коэффициента диффузии при завышенной дозе вносимого растворителя по сравнению с требуемым (заранее неизвестным). В этом случае значительно увеличивается длительность эксперимента (фигура 3, кривые 1 и 2), и существенно увеличивается погрешность измерения искомого коэффициента диффузии. Причем негативные последствия превышения вносимой дозы увеличиваются по мере отклонения в большую сторону величины вносимой дозы.
Техническая задача предлагаемого технического решения предполагает повышение точности измерения коэффициента диффузии.
Техническая задача достигается тем, что в отличие от прототипа (патент РФ на изобретение № 2756665, G01N 13/00, G01N 15/082 04.10.2021, Бюл. № 28) измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала Emax2 более удаленного от точки нанесения импульсного воздействия второго гальванического датчика, равного (0,75 – 0,95)Ee, а расчет искомого коэффициента диффузии производят при значениях сигналов обоих датчиков E1 и E2, равных (Emax2 - 0,05Ee), где Ee - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Причем, если после нанесения импульса дозой растворителя максимальное значение сигнала более удаленного от точки нанесения импульсного воздействия второго гальванического преобразователя Emax2 наблюдается за пределами диапазона (0,75 – 0,95)Ee, ожидают снижение сигналов преобразователей до начального значения, а затем осуществляют новое импульсное воздействие увеличенной или уменьшенной дозой растворителя, и эту процедуру повторяют до вхождения максимального значения сигнала преобразователя Emax2 в указанный диапазон, после чего рассчитывают искомый коэффициент диффузии.
Сущность предлагаемого способа заключается в следующем: исследуемый образец из листового капиллярно-пористого материала с равномерным начальным распределением растворителя (в том числе и нулевым) помещают на плоскую подложку из непроницаемого для растворителя материала, например фторопласта.
К поверхности образца прижимается зонд с импульсным точечным источником дозы растворителя и расположенными на двух концентрических окружностях разного диаметра относительно точки импульсного воздействия на изделие электродами двух гальванических преобразователей. После подачи импульса источник растворителя удаляется из зонда, отверстие для размещения источника растворителя герметизируется заглушкой, а сам зонд обеспечивает гидроизоляцию поверхности образца в зоне действия источника и прилегающей к ней области контроля распространения растворителя. После подачи импульса фиксируют изменение ЭДС гальванических преобразователей во времени.
Если в эксперименте максимум сигнала Emax2 более удаленного от точки нанесения импульсного воздействия второго датчика наблюдается в пределах (0,75 – 0,95)Ee, то производят расчет искомого коэффициента диффузии на основании данных о моментах времени
где r1 и r2– расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия.
Если после нанесения импульса дозой растворителя максимальное значение сигнала более удаленного от точки нанесения импульсного воздействия второго гальванического преобразователя Emax2 наблюдается за пределами диапазона (0,75 – 0,95)Ee, то ожидают снижение сигналов преобразователей до начального значения, а затем осуществляют новое импульсное воздействие увеличенной или уменьшенной дозой растворителя, причем эту процедуру повторяют до вхождения максимального значения сигнала преобразователя Emax2 в указанный диапазон, после чего рассчитывают искомый коэффициент диффузии по той же процедуре с применением расчетного выражения (1).
Среднеквадратическая оценка
где
В формулах (3) и (4) символами ∆ обозначены абсолютные погрешности определения разности
При фиксированных значениях r1 и r2, реализованных в устройстве, погрешности разности
При увеличении вносимой дозы растворителя уменьшается разница между значениями
Примеры. Были проведены исследования коэффициента диффузии этанола в целлюлозном фильтре толщиной 0,2 мм, плотностью в сухом состоянии 400 кг/м. куб. Расстояние от источника дозы растворителя до расположения электродов гальванических преобразователей: r1 = 4 мм и r2 = 6 мм. Количество внесенного растворителя определялось по мерной емкости. Исследования проводились при комнатной температуре.
На фигурах 1 - 3 представлены кривые изменения ЭДС гальванических преобразователей в относительных единицах к Ee при различных величинах вносимых доз этанола: соответственно 0.6×10-6, 0.8×10-6 и 1,8×10-6 кг.
Пример 1. Анализ результатов, представленных на фигуре 1, свидетельствует о том, что достигаемый максимум ЭДС на втором более удаленном датчике при дозе 0.6×10-6 кг составляет величину Emax2 ˂ 0,75 Ee (фигура 1, кривая 2). В этом случае не удается определить значение τ2 с требуемой точностью, т.к. значение E2 попадает на нестабильный участок статической характеристики гальванического преобразователя. А стремление использовать значение E2 ≈ 0,7 Ee приводит к существенной погрешности измерения момента времени τ2 вследствие низкой чувствительности датчика вблизи максимума кривой, где производная сигнала по времени стремится к нулю (фигура 1, кривая 2). При использовании импульса менее 0.6×10-6 кг вообще невозможно надежно фиксировать значение τ2, т.к. изменение ЭДС второго датчика происходит в нестабильной области статической характеристики гальванического преобразователя.
Пример 2. При дозе 0.8×10-6 кг достигаемый максимум на втором более удаленном датчике наблюдается на нижней границе диапазона (0,75 – 0,95)Ee (фигура 2, кривая 2). При этом имеется возможность надежного фиксирования моментов времени τ1 и τ2 при значениях сигналов обоих датчиков E2 и E1 (фигура 2, кривая 1), приблизительно равных
В этом случае используется значение ЭДС преобразователей, находящихся на нижней границе рационального участка (0,7 – 0,9)Ee их статической характеристики со стабильным помехозащищенным сигналом. Фиксирование момента времени τ2 при значениях сигналов обоих датчиков E2 и E1 больших 0,7Ee связано с увеличением погрешности за счет снижения чувствительности преобразователя вблизи наблюдаемого максимума, где производная сигнала по времени стремится к нулю (фигура 2, кривая 2). Поэтому измерения целесообразно проводить при значениях сигналов обоих датчиков E2 и E1, меньших максимума Emax2 приблизительно на 0.05Ee. При использовании значения 0,7Ee получены следующие данные:
Пример 3. При дозе 1.8×10-6 кг достигаемый максимум на втором более удаленном датчике наблюдается на верхнем пределе диапазона (0,75 – 0,95)Ee (фигура 3, кривая 2). В этом случае можно измерять искомый коэффициент диффузии при равных значениях ЭДС преобразователей E1 и E2 из всего рационального диапазона (0,7 – 0,9)Ee. В таблице представлены результаты измерения при различных значениях ЭДС преобразователей.
E1/Ee = E2/Ee
Анализ данных, приведенных в таблице, и результатов при меньшей дозе, равной 0.8×10-6 кг (пример 2), показывает, что с увеличением дозы снижаются значения
Анализ кривых на фигурах 1,2,3 показывает, что при увеличении вносимой дозы наблюдаются тенденции к увеличению значений
Поэтому увеличение дозы свыше 1.8×10-6 кг (при которой Emax2 ˃0,95Ee) не целесообразно, т.к. происходит дальнейшее снижение
Таким образом, при достижении в эксперименте максимума сигнала Emax2 более удаленного от точки нанесения импульсного воздействия второго датчика в пределах (0,75 – 0,95)Ee (фигуры 2 и 3, кривая 2) обеспечивается возможность фиксирования моментов времени τ1 и τ2 при равных значениях сигналов обоих датчиков E2 и E1 (фигуры 2 и 3, кривые 1, 2) на участке статической характеристики преобразователей в диапазоне (0,7 – 0,9)Ee со стабильным помехозащищенным сигналом. Для повышения точности измерения искомого коэффициента диффузии целесообразно в расчетах использовать значения моментов времени
Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах заключается в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигналов двух гальванических преобразователей, расположенных на разных расстояниях r1 и r2 от точки нанесения импульса дозой растворителя, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E1 и второго датчика E2 из диапазона (0,7 – 0,9)Ee на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков и рассчитывают коэффициент диффузии. Измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала Emax2 более удаленного от точки нанесения импульсного воздействия второго гальванического датчика, равного (0,75 – 0,95)Ee, а расчет искомого коэффициента диффузии производят при значениях сигналов обоих датчиков E1 и E2, приблизительно равных (Emax2 - 0,05Ee), где Ee - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния. Техническим результатом является повышение точности измерения коэффициента диффузии. 1 з.п. ф-лы, 3 ил., 1 табл.
1. Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах, заключающийся в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигналов двух гальванических преобразователей, расположенных на разных расстояниях r1 и r2 от точки нанесения импульса дозой растворителя, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E1 и второго датчика E2 из диапазона (0,7 – 0,9)Ee на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков и рассчитывают коэффициент диффузии, отличающийся тем, что измерение коэффициента диффузии осуществляют при условии достижения в эксперименте максимума сигнала Emax2 более удаленного от точки нанесения импульсного воздействия второго гальванического датчика, равного (0,75 – 0,95)Ee, а расчет искомого коэффициента диффузии производят при значениях сигналов обоих датчиков E1 и E2, приблизительно равных (Emax2 - 0,05Ee), где Ee - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.
2. Способ по п. 1, отличающийся тем, что при достижении максимального значения сигнала второго гальванического преобразователя Emax2 после нанесения импульса дозой растворителя за пределами диапазона (0,75 – 0,95)Ee ожидают снижение сигналов преобразователей до начального значения, а затем осуществляют новое импульсное воздействие увеличенной или уменьшенной дозой растворителя, причем эту процедуру повторяют до вхождения максимального значения сигнала преобразователя Emax2 в указанный диапазон, после чего рассчитывают искомый коэффициент диффузии.
Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах | 2021 |
|
RU2756665C1 |
СПОСОБ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ВЛАГИ В КАПИЛЛЯРНО-ПОРИСТЫХ ЛИСТОВЫХ МАТЕРИАЛАХ | 2010 |
|
RU2436066C1 |
Способ определения характеристик пористых материалов | 1988 |
|
SU1516893A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ МАССОПРОВоЬ- ^'^^AJJTfKf | 0 |
|
SU174005A1 |
Авторы
Даты
2023-05-31—Публикация
2023-03-06—Подача