Область техники, к которой относится изобретение. Изобретение относится к области биотехнологии, молекулярно-генетической диагностики, в частности к оценке однонуклеотидного полиморфизма rs12610495 (A>G) гена DPP9 молекулярно-генетическим методом исследования.
Уровень техники. Полиморфный вариант rs12610495 гена DPP9 был установлен широкогеномными исследованиями ассоциаций как вариант, ассоциированный с тяжелым течением COVID-19 [https://www.ebi.ac.uk/gwas/variants/rs12610495]. Ген DPP9 (Gene ID: 91039) локализован на хромосоме 19p13.3. Однонуклеотидный полиморфизм rs12610495, позиция chr19:4717660 (GRCh38.p14) (https://www.ncbi.nlm.nih.gov/snp/rs12610495) локализован в интроне и характеризуется заменой A>G,Т. Однако, аллель Т встречается в европейских популяциях с частотой <0,0000001, в связи с чем именно замена A>G является актуальной для клинических молекулярно-генетических исследований.
Высокая клинико-диагностическая значимость данного генетического варианта относительно тяжелого течения COVID-19 создает потребность в создании простого в исполнении, недорого и доступного исследователям, работающим в области генетической эпидемиологии, метода идентификации однонуклеотидного полиморфизма rs12610495 (A>G) гена DPP9.
Известен способ анализа генетических вариаций в геноме человека методом секвенирования амплифицированных участков ДНК [Mardis E. R. DNA sequencing technologies: 2006-2016 //Nature protocols. - 2017. - Vol. 12. - №. 2. - P. 213-218]. Недостатками метода являются высокая стоимость оборудования и реагентов, что исключает широкое внедрение метода в экспериментальные исследования, особенно изучение заболеваний, которые требуют большого размера выборок для обеспечения высокой мощности исследований.
Известен способ анализа генетических вариаций в геноме человека методом матричноактивированной лазерной десорбционно-ионизационной масс-спектрометрии (MALDI). Метод заключается в том, анализируемая ДНК переносится на подложку, где она кристаллизуется с матрицей. Затем кристаллизованные аналиты переносят, облучают лазером, вызывая десорбцию и ионизацию молекул в вакуумной камере. Положительно заряженные ионы ДНК ускоряются и мигрируют через вакуумную трубку к высокочувствительному детектору с разной скоростью в зависимости от массы ионов, что приводит к различному времени пролета. Используя время пролета отдельных ионизированных ДНК-аналитов, система определяет массу и отображает масс-спектр, идентифицирующий различные генетические мишени [Li D. et al. MALDI-TOF mass spectrometry in clinical analysis and research //ACS Measurement Science Au. - 2022. - Vol. 2. - №. 5. - P. 385-404]. Недостатками метода являются трудоемкость, высокая стоимость оборудования, высокая стоимость эксперимента, наличие высококвалифицированного персонала.
За прототип выбран коммерческий набор по генотипированию rs12610495 (A/G) DPP9 (C___2596627_20; каталог 4351379) компании ThermoFisher. Однако, генотипирование с использованием коммерческих наборов характеризуется высокой стоимостью, а информация о структуре необходимых для проведения ПЦР праймеров и аллель-специфических зондов является закрытой для исследователей, в связи с чем он не может быть воспроизведен при наличии стандартного набора оборудования и реактивов.
Таким образом, существует реальная потребность в создании быстрого, недорогого и легко воспроизводимого способа идентификации полиморфизма rs12610495 (A>G) гена DPP9, с доступной всем исследователям структурой праймеров и аллель-специфических зондов, который мог бы использоваться в качестве «рутинного» метода генотипирования в любой ПЦР-лаборатории.
Раскрытие сущности изобретения. Техническим результатом данного изобретения является разработка простого в исполнении и экономически целесообразного способа генотипирования однонуклеотидного полиморфизма rs12610495 (A>G), локализованного в позиции chr19:4717660 (GRCh38.p14) гена DPP9 (Gene ID: 91039) методом полимеразной цепной реакции в режиме «реального времени» с применением аллель-специфических сигнальных зондов, содержащие флуорофоры FAM и ROX.
Технический результат достигается тем, что идентификацию аллельных вариантов rs12610495 (A>G) гена DPP9 осуществляют с использованием прямого праймера rs12610495 5′- TATAGACCCGCGTGGCTTGT-3′ (SEQ ID NO 1), обратного праймера rs12610495 5′-GCCACATCCAGAAGATTCCT-3′ (SEQ ID NO 2),
rs12610495-A-аллель-специфичного флуоресцентно-меченого зонда
5′-(FAM)CATTTCTCATCTCCGGGATCGAAT(RTQ1)-3′ (SEQ ID NO 3),
rs12610495-G-аллель-специфичного флуоресцентно-меченого зонда
5′-(ROX)CATTTCTCATCCCCGGGATCGAAT(BHQ2)-3′ (SEQ ID NO 4).
Изобретение поясняется следующей фиг. 1: дискриминация аллелей по локусу rs12610495 гена DPP9 при генотипировании методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов по данным величин RFU (относительные единицы флуоресценции) на амплификаторе CFX96: генотипы rs12610495-A/A показаны оранжевыми кругами, генотипы rs12610495-A/G показаны зелеными треугольниками, генотипы rs12610495-G/G показаны голубыми квадратами; черным ромбом отмечен отрицательный контроль.
Работа над дизайном олигонуклеотидов включала несколько этапов:
1) С применением открытой базы данных Ensembl genome browser 109 [https://www.ensembl.org/index.html] выбран синвенс, фланкирующий искомую однонуклеотидную замену [A/G] rs12610495 гена DPP9, и затем с помощью доступного онлайн программного обеспечения Primer3web version 4.1.0 [https://primer3.ut.ee/] подобрана последовательность олигонуклеотидов, используемых для проведения ПЦР-реакции:
прямой общий праймер rs12610495 5′- TATAGACCCGCGTGGCTTGT-3′ (SEQ ID NO 1),
обратный общий праймер rs12610495 5′-GCCACATCCAGAAGATTCCT-3′ (SEQ ID NO 2).
Размер амплифицируемого в ходе ПЦР фрагмента гена DPP9 составляет 155 пар нуклеотидов:
(TATAGACCCGCGTGGCTTGTTTTCATTGCAAAGAACAATAAAAATTATCTTGCCTCTGATCACCACTGATAGCCCAAGAAGCAAAAATTCGATCCCGG[A/G]GATGAGAAATGAAATGAAACATCGCGAGAAACTTCCAGGAATCTTCTGGATGTGGC)
2) Для дизайна зондов пользовались практическими рекомендациями [Basu C. (ed.). PCR primer design. - New york : Humana Press, 2015]. В реакции использовались гидролизные зонды. Последовательность зонда подбирали таким образом, чтобы он отжигался на матрицу между прямым и обратным праймерами. Зонды подбирали на обратную (Reverse) цепь ДНК. Каждый зонд снабжали флуорофором и гасителем флуоресценции, спектр поглощения которого соответствует длинам волн спектра флуорофора. Для гашения флуоресценции FAM пользовались гасителем RTQ1; для гашения флуоресценции ROX - гасителем BHQ2.
На основании изложенных критериев и практических рекомендаций были подобраны зонды со следующей структурой:
rs12610495-A-аллель-специфичный флуоресцентно-меченый зонд
5′-(FAM)CATTTCTCATCTCCGGGATCGAAT(RTQ1)-3′(SEQ ID NO 3),
rs12610495-G-аллель-специфичный флуоресцентно-меченый зонд
5′-(ROX)CATTTCTCATCCCCGGGATCGAAT(BHQ2)-3′ (SEQ ID NO 4).
3) Изготовление праймеров и зондов осуществлялось в сервисном центре НПК «Синтол», Москва.
4) С помощью практических экспериментов подобраны оптимальные условия для проведения генотипирования, которые включают следующие этапы: 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 57°C в течение 1 минуты].
5) Разработанный способ был апробирован в лаборатории геномных исследований на 200 образцах ДНК здоровых индивидуумов биобанка НИИ генетической и молекулярной эпидемиологии КГМУ. Генотипирование осуществляли по данным величин RFU (относительные единицы флуоресценции) зондов с флуоресцентными красителями. По результатам генотипирования rs12610495 105 человек (52,5%) оказались гомозиготами по аллелю A (генотип A/A); 71 человек (35,5%) являлись гетерозиготами (генотип A/G), 24 человека (12%) индивидуумов оказались гомозиготами по аллелю G (генотип G/G).
6) Валидацию способа проводили методом масс-спектрометрического анализа на геномном времяпролетном масс-спектрометре MassArray analyzer 4 (Agena Bioscience). Результаты обоих способов генотипирования полностью (100% генотипов) совпали. Однако патентуемый способ генотипирования полиморфного локуса rs12610495 (A>G) гена DPP9 методом ПЦР в режиме «реального времени» с применением аллель-специфических зондов позволяет значительно (на 6 часов) сократить время проведения анализа, а также снижает себестоимость анализа (в 4-5 раз).
Осуществление изобретения.
Способ осуществляют следующим образом:
1. Выделение ДНК из периферической венозной крови. На первом этапе к 0,5 мл крови добавляли 0,5 мл PBS и центрифугировали 10 мин при 12 тыс. об/мин. Надосадочную жидкость сливали, добавляли 1 мл PBS и вновь центрифугировали при тех же условиях. Надосадочную жидкость сливали, добавляли 200 мкл ТЕ-буфера, пипетировали до растворения осадка и затем последовательно добавляли 10 мкл 1% раствора додецилсульфата натрия SDS и 5 мкл протеиназы К. Пробирки инкубировали в термостате при t=37°C 12 ч. В ходе второго этапа проводили четыре последовательных центрифугирования с фенолом и хлороформом согласно протоколу методики (10 мин, 8 тыс. об/мин), после чего ДНК осаждали ледяным раствором 95% этилового спирта и центрифугировали 10 мин при 14,3 тыс. об/мин. По испарении спирта ДНК растворяли в 100 мкл деионизированной дистиллированной воды. Получаемый раствор ДНК в воде имел чистоту в диапазоне А260/280=1,5-2,0 и среднюю концентрацию около 180-200 нг/мкл.
2. Подготовка образцов ДНК к генотипированию. Качество выделенной ДНК оценивали по степени чистоты и концентрации раствора на спектрофотометре NanoDrop (Thermo Fisher Scientific, США). Все анализируемые образцы ДНК были разведены деионизированной водой до концентрации 15-20 нг/мкл при А260/280=1,5-2,0.
3. Анализ полиморфизма rs12610495 (A>G) гена DPP9 с помощью полимеразной цепной реакции в реальном времени с использованием аллель-специфических зондов. Для генотипирования использовали два фланкирующих праймера, прямой (SEQ ID NO 1) и обратный (SEQ ID NO 2), а также аллель-специфические зонды: A-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 3), G-аллель-специфичный флуоресцентно-меченый зонд (SEQ ID NO 4).
ПЦР в «реальном времени» проводили в 25 мл реакционной смеси, содержащей 1,25 ЕД ДНК-полимеразы Hot Start Taq («Биолабмикс», Новосибирск, Россия), 20 нг ДНК, по 10 мкМ каждого праймера, по 5 мкМ каждого зонда, 0.03 мМ каждого dNTP, 2,0 мМ MgCl2; 1xПЦР-буфер [67 мМ Tris-HCl, pH 8,8, 16,6 мМ (NH4)2SO4, 0,01% Tween-20]. Реакция амплификации состояла из стадии нагревания до 50°C в течение 2 минут, 95°C в течение 10 минут, затем 39 циклов [95°C в течение 10 секунд и 57°C в течение 1 минуты].
4. Генотипирование. При проведении ПЦР в амплификаторе с флуоресцентной детекцией (Bio-Rad CFX96 или аналогичном амплификаторе) генотипирование осуществляют по данным величин RFU (относительных единиц флуоресценции). Для rs12610495 (A>G) гена DPP9 зонд с флуоресцентным красителем FAM соответствует аллелю A, зонд с красителем ROX - аллелю G (фиг. 1). На фиг. 1 видно четкое разделение образцов на кластеры, где черный ромб соответствуют отрицательному контролю, кластер оранжевых кругов - соответствует зонду с флуоресцентным красителем FAM и позволяет идентифицировать гомозигот A/A. Кластер синих квадратов соответствует зонду с красителем ROX и позволяет идентифицировать гомозигот G/G. Кластер зеленых треугольников соответствует накоплению уровня флуоресценции по обоим зондам и позволяет идентифицировать гетерозигот A/G.
Резюме.
Таким образом, разработан эффективный и недорогой способ для экспресс-идентификации полиморфного варианта rs12610495 (A>G) гена DPP9 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, который может быть использован в медицине при определении предрасположенности к развитию заболеваний, ассоциированных с носительством полиморфизмов гена DPP9, а также в научных целях.
--->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ST26SequenceListing PUBLIC "-//WIPO//DTD Sequence Listing
1.3//EN" "ST26SequenceListing_V1_3.dtd">
<ST26SequenceListing dtdVersion="V1_3" fileName="Способ
генотипирования полиморфного локуса rs12610495 (A G) гена DPP9 у
человека методом ПЦР в режиме «реального времени» с применением
аллель-специфических флуоресцентных зондов.xml" softwareName="WIPO
Sequence" softwareVersion="2.3.0" productionDate="2024-02-25">
<ApplicationIdentification>
<IPOfficeCode>RU</IPOfficeCode>
<ApplicationNumberText></ApplicationNumberText>
<FilingDate></FilingDate>
</ApplicationIdentification>
<ApplicantFileReference>1867</ApplicantFileReference>
<ApplicantName languageCode="ru">Федеральное государственное
бюджетное образовательное учреждение высшего образования
"Курский государственный медицинский университет"
Министерства здравоохранения Российской Федерации,</ApplicantName>
<ApplicantNameLatin>Kursk State Medical
University</ApplicantNameLatin>
<InventionTitle languageCode="ru">Способ генотипирования
полиморфного локуса rs12610495 (A>G) гена DPP9 у человека методом
ПЦР в режиме «реального времени» с применением аллель-специфических
флуоресцентных зондов</InventionTitle>
<SequenceTotalQuantity>4</SequenceTotalQuantity>
<SequenceData sequenceIDNumber="1">
<INSDSeq>
<INSDSeq_length>20</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q2">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>tatagacccgcgtggcttgt</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="2">
<INSDSeq>
<INSDSeq_length>20</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..20</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q4">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>gccacatccagaagattcct</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="3">
<INSDSeq>
<INSDSeq_length>24</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..24</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q6">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>catttctcatctccgggatcgaat</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
<SequenceData sequenceIDNumber="4">
<INSDSeq>
<INSDSeq_length>24</INSDSeq_length>
<INSDSeq_moltype>DNA</INSDSeq_moltype>
<INSDSeq_division>PAT</INSDSeq_division>
<INSDSeq_feature-table>
<INSDFeature>
<INSDFeature_key>source</INSDFeature_key>
<INSDFeature_location>1..24</INSDFeature_location>
<INSDFeature_quals>
<INSDQualifier>
<INSDQualifier_name>mol_type</INSDQualifier_name>
<INSDQualifier_value>other DNA</INSDQualifier_value>
</INSDQualifier>
<INSDQualifier id="q8">
<INSDQualifier_name>organism</INSDQualifier_name>
<INSDQualifier_value>synthetic construct</INSDQualifier_value>
</INSDQualifier>
</INSDFeature_quals>
</INSDFeature>
</INSDSeq_feature-table>
<INSDSeq_sequence>catttctcatccccgggatcgaat</INSDSeq_sequence>
</INSDSeq>
</SequenceData>
</ST26SequenceListing>
<---
Настоящее изобретение относится к области биотехнологии, в частности к способу генотипирования полиморфного локуса rs12610495 (A>G) гена DPP9 у человека методом ПЦР в режиме «реального времени» с применением праймеров SEQ ID NO: 1, SEQ ID NO: 2 и аллель-специфических флуоресцентных зондов SEQ ID NO: 3, SEQ ID NO: 4 в амплификаторе с детекцией флуоресценции. Изобретение эффективно для точного и недорогого генотипирования полиморфного локуса rs12610495 (A>G) гена DPP9 человека. 1 ил., 1 пр.
Способ генотипирования полиморфного локуса rs12610495 (A>G) гена DPP9 у человека методом ПЦР в режиме «реального времени» с применением аллель-специфических флуоресцентных зондов, отличающийся тем, что идентификацию аллельных вариантов rs12610495 (A>G) гена DPP9 осуществляют с использованием прямого праймера rs12610495 5′- TATAGACCCGCGTGGCTTGT-3′ (SEQ ID NO: 1), обратного праймера rs12610495 5′-GCCACATCCAGAAGATTCCT-3′ (SEQ ID NO: 2), rs12610495-A-аллель-специфичного флуоресцентно-меченого зонда 5′-(FAM)CATTTCTCATCTCCGGGATCGAAT(RTQ1)-3′ (SEQ ID NO: 3), rs12610495-G-аллель-специфичного флуоресцентно-меченого зонда 5′-(ROX)CATTTCTCATCCCCGGGATCGAAT(BHQ2)-3′ (SEQ ID NO: 4).
WO 2014127290A2, 21.08.2014 | |||
CRISTINE DIETER et al., Polymorphisms in ACE1, TMPRSS2, IFIH1, IFNAR2, and TYK2 Genes Are Associated with Worse Clinical Outcomes in COVID-19, Genes (Basel), 2022, vol | |||
Паровоз для отопления неспекающейся каменноугольной мелочью | 1916 |
|
SU14A1 |
X S QIU et al., Association study between adolescent idiopathic scoliosis and the DPP9 gene which is located in the |
Авторы
Даты
2024-06-27—Публикация
2024-04-15—Подача