GAN-CNN FOR PREDICTING MHC-PEPTIDE BINDING Russian patent published in 2025 - IPC G16B20/30 

Abstract RU 2836823 C2

FIELD: bioinformatics.

SUBSTANCE: described is a computer-implemented method of classifying data, comprising: presenting, using a computing device, a convolutional neural network (CNN) data set, where the data set comprises a plurality of candidate polypeptide-MHC-I interactions, and where the CNN is trained based on positive simulated polypeptide-major histocompatibility complex I (MHC-I) data, positive real polypeptide-MHC-I interaction data and negative real polypeptide-MHC-I interaction data; and classifying, by CNN, at least one candidate polypeptide-MHC-I interaction from the plurality of candidate polypeptide-MHC-I interactions as positive or negative. Corresponding device for classifying data is disclosed, as well as a non-volatile machine-readable medium (CRM) for classifying data.

EFFECT: invention extends the range of means for identifying new data.

15 cl, 17 dwg, 2 tbl, 6 ex

Similar patents RU2836823C2

Title Year Author Number
GAN-CNN FOR PREDICTION OF MHC-PEPTIDE BINDING 2019
  • Wang, Xingjian
  • Huang, Ying
  • Wang, Wei
  • Zhao, Qi
RU2777926C2
METHOD AND SYSTEMS FOR PREDICTION OF HLA CLASS II-SPECIFIC EPITOPES AND CD4+ T-CELL CHARACTERIZATION 2019
  • Rooney, Michael Steven
  • Abelin, Jennifer Grace
  • Barthelme, Dominik
  • Kamen, Robert
RU2826261C2
METHOD OF TRANSMITTING MOTION OF A SUBJECT FROM A VIDEO TO AN ANIMATED CHARACTER 2019
  • Ashmanov Stanislav Igorevich
  • Sukhachev Pavel Sergeevich
RU2708027C1
MULTI-FRAME TRAINING OF REALISTIC NEURAL MODELS OF SPEAKERS HEADS 2019
  • Zakharov Egor Olegovich
  • Shysheya Aliaksandra Petrovna
  • Burkov Egor Andreevich
  • Lempitsky Victor Sergeevich
RU2720361C1
FAST CALCULATION OF CONVOLUTIONAL NEURAL NETWORK 2018
  • Liu, Yongchao
  • Huang, Qiyin
  • Pan, Guozhen
  • Li, Sizhong
  • Xu, Jianguo
  • Zhang, Haitao
  • Wang, Lin
RU2722473C1
SYSTEM AND METHOD FOR SUPPORTING PLANT DISEASE DETECTION 2020
  • Picon Artzai
  • Nachtmann Matthias
  • Seitz Maximilian
  • Mohnke Patrick
  • Navarra-Mestre Ramon
  • Iokhannes Aleksander
  • Eggers Till
  • Ortis Barredo Amaiia Mariia
  • Alvarez-Gila Aitor
  • Echazarra Huguet Jone
RU2815542C2
A DEEP LEARNING FRAME FOR IDENTIFYING SEQUENCE PATTERNS THAT CAUSE SEQUENCE SPECIFIC ERRORS (SSE) 2019
  • Kashefagigi, Dorna
  • Kia, Amirali
  • Farkh, Kaj-Khou
RU2745733C1
SPLICING SITES CLASSIFICATION BASED ON DEEP LEARNING 2018
  • Dzhaganatan, Kishor
  • Farkh, Kaj-Khou
  • Kiriazopulu Panajotopulu, Sofiya
  • Makrej, Dzheremi Frensis
RU2780442C2
METHOD AND SYSTEM FOR AUTOMATIC ECG ANALYSIS 2020
  • Egorov Konstantin Sergeevich
  • Avetisyan Manvel Sogomonovich
  • Sokolova Elena Vladimirovna
RU2767157C2
REPEATED SYNTHESIS OF IMAGE USING DIRECT DEFORMATION OF IMAGE, PASS DISCRIMINATOR AND COORDINATE-BASED REMODELLING 2019
  • Sevastopolsky Artem Mikhailovich
  • Grigoriev Artur Andreevich
  • Lempitsky Victor Sergeevich
  • Vakhitov Alexander Timurovich
RU2726160C1

RU 2 836 823 C2

Authors

Wang, Xingjian

Huang, Ying

Wang, Wei

Zhao, Qi

Dates

2025-03-24Published

2019-02-18Filed