Изобретение относится к экспериментальной аэродинамике.
Цель изобретения - повышение точности результатов измерений за счет исключения влияния погрешностей, вносимых градиентами давления и нестабильностью температуры.
Способ реализуется с помощью устройства с плавающим элементом.
На чертеже приведена схема предлагаемого устройства.
Устройство содержит обтекаемую поверхность 1, в которой выполнен люк 2. В люке 2 расположены аэродинамические тензорезисторные весы с плавающим элементом 3 с зазорами 4 по периметру плавающего элемента глубиной около 1 мм, которые заполняют полимеризующимся студнем с модулем упругости 0,1-10 Н/см2.
Аэродинамические весы содержат подвижную 5 и неподвижную 6 рамы, основание 7, упругие элементы 8 с первичными измерительными преобразователями 9, упругие растяжки 10 и систему регулировочных винтов 11-15. Для теплоизоляции люк с аэродинамическими весами закрывается кожухом 16.
Подвижная рама 5 с помощью упругих растяжек 10 расчленена по углам за основание 7, что обеспечивает параллельное перемещение плавающего элемента 3.
Регулировка зазоров по периметру плавающего элемента 3 обеспечивается перемещением основания 7 относительно неподвижной рамы 6 с помощью нескольких установленных по периметру оснований 7 регулировочных винтов 11 и 12.
Установка плавающего элемента 3 в требуемом положении по высоте относительно обтекаемой поверхности 1 осуществляется с помощью подпружиненных регулировочных винтов 13 и стопоров 14.
В нерабочем состоянии подвижная рама 5 может быть заарретирована с помощью винтов 15.
В качестве первичных измерительных преобразователей 9 (чувствительных элементов) могут быть использованы полупроводниковые тензорезисторы типа КМ-2-4 (кремниевые монокристаллические элементы с базой 4 мм). Тензорезисторы размещают в местах максимального напряжения упругих элементов 8 тензовесов и собирают в полную мостовую схему. Сигнал с измеряемой диагонали моста через фильтр низких частот может быть подан на любой тип регистратора.
Способ реализуется следующим образом.
Перед измерениями плавающий элемент 3 с помощью регулировочных винтов 11 и 12 выставляют с зазором 4, равным 0,5-0,8 мм, между обтекаемой поверхностью 1 и кромками плавающего элемента 3. Подвижная рама 5 с плавающим элементом 3 под действием внешних сил перемещается вниз по потоку на расстояние, пропорциональное силе поверхностного трения (0,01-0,5 Н), и составляет 0,03-0,1 мм (деформация геля до 10% ). Величина зазора 0,5-0,8 мм гарантирует отсутствие сбоев весов из-за перегрузок, которые могут привести к поломке упругих растяжек 10. Дальнейшее увеличение зазора 4 ( > 0,8 мм) нецелесообразно, так как при этом в большей степени нарушаются условия естественного обтекания. Уменьшение переднего зазора 4 ( < 0,5 мм) трудно осуществимо из-за слишком высоких требований к качеству кромок исследуемых образцов и их температурным деформациям.
После регулировки зазоров из заполняют материалом с низким модулем упругости, в качестве которого используют полимеризующийся студень, образующий легкодеформируемую упругую перемычку между исследуемым образцом и поверхностью корпуса измерительного устройства. Для равномерности деформаций толщину слоя студня берут равной величине зазора 0,5-0,8 мм. Затем градуируют весы и помещают измерительное устройство в поток.
Возникающая при взаимодействии потока с исследуемой поверхностью 1 сила трения воспринимается упругими элементами 8, в которых возникают, например, деформации изгиба, которые преобразуются преобразователями 9 в электрический сигнал, регистрируемый с помощью известных средств.
При этом в качестве студня применяют смесь силиконового масла и силиконового каучука в массовом соотношении 4: 1. (56) Авторское свидетельство СССР N 1067929, кл. G 01 N 19/09, G 01 M 9/00, 1982.
Измерение поверхностного трения в турбулентном пограничном слое при больших неблагоприятных градиентах давления. - Механика, реф. 6Б233, 1981, N 6.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для измерения аэродинамической силы и момента | 2018 |
|
RU2697570C1 |
Устройство для измерения силы трения пограничного слоя потока газа на обтекаемых поверхностях | 2021 |
|
RU2780307C1 |
Однокомпонентные тензовесы для измерения шарнирного момента | 2023 |
|
RU2798685C1 |
Устройство измерения шарнирного момента отклоняемой поверхности | 2018 |
|
RU2681251C1 |
ПЯТИКОМПОНЕНТНЫЕ ТЕНЗОВЕСЫ | 2015 |
|
RU2595321C1 |
СПОСОБ КАЛИБРОВКИ ТЕНЗОМЕТРИЧЕСКИХ ВЕСОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2021 |
|
RU2777350C1 |
СИЛОИЗМЕРИТЕЛЬНАЯ ПЛАТФОРМА | 1991 |
|
RU2037794C1 |
Устройство для измерения силы взаимодействия потока жидкости или газа с поверхностью объекта | 1982 |
|
SU1045017A1 |
Стенд для измерения нагрузок, воздействующих на объект авиационной техники | 2017 |
|
RU2651627C1 |
Устройство для исследования нестационарных аэродинамических характеристик модели в аэродинамической трубе | 2019 |
|
RU2717748C1 |
Изобретение относится к экспериментальной аэродинамике. Цель изобретения - повышение точности результатов измерений за счет исключения влияния погрешностей, вносимых градиентами давления и нестабильностью температуры. Способ заключается в том, что измеряют поверхностное трение с помощью плавающего элемента аэродинамических тензорезисторных весов путем регистрации деформаций изгиба весового элемента. Плавающий элемент устанавливают с зазором по его периметру, заполняют зазоры полимеризующимся студнем, в качестве которого применяют смесь силиконового масла и силиконового каучука в массовом соотношении 4 : 1. 1 з. п. ф-лы, 1 ил.
СПОСОБ ИЗМЕРЕНИЯ ПОВЕРХНОСТНОГО ТРЕНИЯ, включающий регистрацию деформаций изгиба элементов тензовесов при нагружении плавающего элемента, который устанавливают с зазором по его периметру относительно корпуса измерительного устройства, заполняют зазоры материалом с низким модулем упругости, градуируют тензовесы и помещают измерительное устройство в поток газа или жидкости, отличающийся тем, что, с целью повышения точности результатов измерений, в качестве материала с низким модулем упругости для заполнения зазоров используют студень.
Авторы
Даты
1994-04-30—Публикация
1989-03-28—Подача