СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ Российский патент 1994 года по МПК C04B18/10 B03B5/64 

Описание патента на изобретение RU2013410C1

Изобретение относится к производству полых микросфер из летучей золы тепловых электростанций, используемых в качестве наполнителей, например, при производстве пластмасс и в некоторых изделиях, работающих в агрессивных средах.

Известен способ получения микросфер из летучей золы, включающий получение водной суспензии с добавлением в нее керосина, перемешивание в последовательно установленных смесителях с добавлением в последней стадии смешивания пенообразователя, двукратную флотацию с максимальным удалением несгоревшего углерода, отстаивание и сгущение оставшейся части зольных уносов с концентрацией микросфер в сливе, съем и обезвоживание их [1] .

Недостатком данного способа являются большие затраты и сложность получения микросфер, так как технология получения микросфер из летучей золы включает большое количество операций смешивания, флотацию для удаления несгоревшего углерода с применением пенообразователя.

Известен также способ получения микросфер из водной суспензии летучей золы тепловых электростанций, включающий гидросепарацию, съем всплывших микросфер и их обезвоживание [2] .

Водную суспензию летучей золы направляют на гидросепарацию (осаждение), при этом в присутствии флокулянта микросферы всплывают, их снимают и направляют на обезвоживание. Оставшийся зольный осадок направляют на обработку для получения магнитного концентрата. Известный способ получения микросфер по сравнению с аналогом более прост за счет исключения операций флотации и сокращения количества операций смешивания. Однако необходимость использования флокулянта при гидросепарации удорожает способ получения микросфер.

Целью изобретения является снижение затрат.

Цель достигается тем, что в известном способе получения микросфер из водной суспензии летучей золы тепловых электростанций, включающем гидросепарацию, съем всплывших микросфер и их обезвоживание, гидросепарацию суспензии осуществляют в нисходящем потоке при скорости его 5-7 м/ч, кроме того содержание твердого в суспензии составляет 8-25% .

Технических решений, имеющих признаки, сходные с отличительными признаками заявляемого способа, не обнаружено. Исследованиями установлено, что при скорости нисходящего потока суспензии 5-7 м/ч гидросепарация в нем происходит наиболее эффективно: наблюдается максимальный выход микросфер без применения флокулянта; микросферы, скорость всплытия которых больше скорости нисходящего потока, концентрируются в верхнем слое суспензии, извлечение их составляет более 80% . К примесям, загрязняющим микросферы, относятся частицы несгоревшего угля, частицы золы и микросферы плотностью более 1000 кг/м3, от их содержания зависит качество материалов, в которых используются микросферы. Из практики известно, что допустимое содержание примесей, загрязняющих микросферы, не должно превышать 2% . Наилучшие результаты при гидросепарации в нисходящем потоке суспензии достигаются при содержании твердого 8-25% , так как происходит максимальное выделение примесей. Предельная концентрация твердого в суспензии (25% ) определена экспериментальным путем (фиг. 2). Как видно из графика, при содержании твердого в суспензии выше 25% увеличивается содержание примесей во всплывших микросферах.

Экспериментальным путем установлены и зависимости показателей извлечения микросфер, удельной производительности по жидкому аппарата для гидросепарации и относительной производительности его по выделению микросфер от скорости нисходящего потока суспензии (фиг. 3). Как видно из графика, оптимальные значения этих показателей получены при скорости нисходящего потока суспензии 5-7 м/ч - извлечение микросфер составляет более 80% , относительная производительность аппарата для гидросепарации по выделению микросфер близка к единице, удельная производительность его по жидкому составляет qж= 5-7 м3/ч˙ м2. Удельная производительность аппарата по твердому может колебаться в широких пределах в зависимости от заданного содержания твердого в суспензии (С), при этом наибольшая удельная производительность его достигается при С= 25% , а минимально допустимая при С= 8% , которые соответственно составляют:
qт= = 1.25-1.75 т/ч·м2 и
qт= = 0,4-0,56 т/ч·м 2
При заданных значениях показателей удельной производительности по жидкому и содержания твердого в суспензии удельная производительность аппарата по микросферам определяется по формуле:
qм.сф= т/ч·м2,
где α - содержание микросфер в летучей золе, % ;
ε - извлечение микросфер в готовую продукцию, % .

Максимальная удельная производительность по микросферам достигается при скорости нисходящего потока 5-7 м/ч и содержании твердого в суспензии 25% , при этом извлечение микросфер из золы составляет 83% .

При уменьшении скорости нисходящего потока суспензии менее 5 м/ч резко снижается относительная производительность по микросферам при некотором увеличении показателя извлечения. При увеличении скорости нисходящего потока более 7 м/ч происходит снижение извлечения и относительной производительности гидросепаратора по микросферам, а следовательно, повышаются затраты.

На фиг. 1 показана установка, реализующая предлагаемый способ; на фиг. 2, 3 - графики, поясняющие предлагаемый способ.

Способ реализуют с помощью установки, включающей ряд пирамидальных емкостей 1, установленных последовательно, ленточный вакуум-фильтр 2 и сушилку 3. Пирамидальные емкости 1 установлены на одном уровне, что позволяет суспензии свободно перемещаться в горизонтальном направлении без завихрений. В нижней части они имеют выходные отверстия 4 с вентилями 5 для регулируемого вывода отработанной суспензии. Последняя пирамидальная емкость 1 имеет порог 6 для ограничения уровня суспензии в системе емкостей и снабжена скребком 7 для съема всплывших микросфер.

Способ включает следующие операции:
- подачу водной суспензии летучей золы в пирамидальные емкости;
- гидросепарацию суспензии в нисходящем потоке при скорости его 5-7 м/ч и содержании твердого 8-25% с извлечением в верхний слой микросфер и выводом отработанной суспензии через регулируемое выходное отверстие пирамидальных емкостей;
- съем всплывших микросфер;
- обезвоживание микросфер путем фильтрования и сушки;
- упаковку микросфер, готовых к использованию.

П р и м е р осуществления способа при средних значениях режимных параметров.

Водная суспензия летучей золы поступает на гидросепарацию в количестве Qж= 650 м3/ч при содержании твердого 15,0% и содержании микросфер в твердом 0,3% . Гидросепарацию осуществляют в трех последовательно установленных пирамидальных емкостях сечением 6х6 м2каждая с общей площадью S= 108 м2.

Указанные параметры обеспечивают извлечение микросфер 83% при оптимальной скорости нисходящего потока:
Vнис= = = 6 м/ч
При этом производительность линии пирамидальных емкостей составляет: по твердому Qт= = 97,5 т/ч ; по микросферам Qм.с.= = 0,24 т/ч .

Процесс гидросепарации осуществляется в следующем порядке.

Водная суспензия летучей золы поступает в первую пирамидальную емкость 1 и оттуда горизонтальным потоком перемещается вл вторую и третью емкости. В каждой из емкостей отработанная суспензия в количестве примерно 33% от исходной суспензии на линию самотеком разгружается через разгрузочное отверстие 4 и удаляется в золоотвальный водоем. Вредные примеси независимо от их крупности полностью выносятся нисходящим потоком суспензии в отходы, а микросферы, скорость всплытия которых больше скорости нисходящего потока, всплывают и переносятся горизонтальным потоком жидкости в последнюю пирамидальную емкость, где их снимают с помощью скребка 7. Снятые микросферы направляют на обезвоживание в вакуум-фильтр 2, где обезвоживают до содержания влаги не более 40% . После вауум-фильтра 2 микросферы поступают в сушилку 3, сушку осуществляют при температуре до 300оС. После сушки микросферы упаковывают для отправки потребителю.

Данный способ применительно к условиям Рефтинской ГРЭС может быть реализован следующим образом. Ежегодно Рефтинская ГРЭС при сжигании угля получает около 6 млн т летучей золы, которая после четырехступенчатого осаждения в электрофильтрах смешивается с водой и транспоpтируется в виде суспензии в золоотвальный водоем.

Для летучей золы Рефтинской ГРЭС, среднее содержание микросфер в которой составляет 0,25% , максимальная удельная производительность пирамидальной емкости по микросферам достигается при содержании твердого в суспензии 25% , извлечении 83% и составляет:
qм.сф.= = 2,6-3,6 кг/ч·м2
В результате предварительного опробования по определению количества и качества микросфер в летучей золе можно ориентировочно утверждать, что сырьевых ресурсов достаточно для организации производства микросфер из водной суспензии в объеме 5000 т/год. Для выполнения гидросепарации рекомендуется установить на площадке перед запроектированной насосной станцией второго подъема суспензии пирамидальные емкости, которые просты и надежны в эксплуатации и обеспечивают высокую производительность по микросферам. Суспензия по имеющимся трубопроводам будет направляться в пирамидальные емкости и через регулируемые выходные отверстия самотеком поступать в приемные емкости насосной станции, оттуда насосами откачиваться в золоотвальный водоем. Всплывшие микросферы из одной пирамидальной емкости в другую перемещаются горизонтальным потоком и в конце линии собираются механическим скребком. Затем микросферы подвергают фильтрации, сушке и упаковке.

Таким образом, использование данного способа позволяет снизить затраты за счет исключения применения флокулянта, что в конкретных условиях Рефтинской ГРЭС снижает затраты не только за счет самого флокулянта, но и на монтаж и эксплуатацию установки для его подачи в процесс.

Похожие патенты RU2013410C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2003
  • Иванов В.В.
  • Долгих Ф.А.
  • Ершов С.В.
RU2236905C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР 2003
RU2257267C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2014
  • Яцек Эдвард Дзедзиц
RU2583794C1
СПОСОБ И УСТРОЙСТВО КОМБИНИРОВАННОГО СБОРА МИКРОСФЕР ИЗ ЗОЛЫ УНОСА 2008
  • Аралов Сергей Викторович
  • Домбровский Владимир Борисович
  • Ефремов Дмитрий Викторович
  • Выборнов Владимир Владимирович
RU2407593C2
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЭС 1991
  • Тумашов В.Ф.
  • Чернявский И.Я.
  • Шапкин Е.Н.
RU2017696C1
СПОСОБ ПОЛУЧЕНИЯ АППРЕТИРОВАННОЙ АЛЮМОСИЛИКАТНОЙ МИКРОСФЕРЫ 2012
  • Предтеченский Михаил Рудольфович
  • Смаль Андрей Николаевич
RU2509738C2
СПОСОБ И УСТРОЙСТВО СБОРА МИКРОСФЕР ИЗ ЗОЛЫ-УНОСА 2008
  • Аралов Сергей Викторович
  • Домбровский Владимир Борисович
  • Ефремов Дмитрий Викторович
  • Выборнов Владимир Владимирович
RU2407857C2
СПОСОБ ПЕРЕРАБОТКИ ЗОЛЫ И/ИЛИ ШЛАКА КОТЕЛЬНЫХ И ТЕПЛОЭЛЕКТРОСТАНЦИЙ 2007
  • Бочкарев Алексей Мартемьянович
  • Горюшкин Владимир Федорович
  • Кулагин Николай Михайлович
  • Ларин Валерий Иванович
RU2344887C1
Способ комплексной переработки золы отвалов тепловых электростанций и установка для комплексной переработки золы отвалов тепловых электростанций 2016
  • Делицын Леонид Михайлович
  • Рябов Юрий Васильевич
  • Попель Олег Сергеевич
  • Гаджиев Шамиль Абдуллаевич
RU2614003C2
ОБЛЕГЧАЮЩАЯ ДОБАВКА ДЛЯ ЦЕМЕНТНЫХ СМЕСЕЙ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Ермаков Анатолий Александрович
  • Цыпкин Евгений Борисович
  • Волкова Людмила Валериевна
RU2419647C1

Иллюстрации к изобретению RU 2 013 410 C1

Реферат патента 1994 года СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

Использование: производство полых микросфер из летучей золы тепловых электростанций для использования в качестве наполнителя при производстве пластмасс, строительных материалов и др. Способ получения микросфер из водной суспензии летучей золы тепловых электростанций включает гидросепарацию водной суспензии при скорости нисходящего потока 5 - 7 м/ч, съем всплывших микросфер и их обезвоживание; причем содержание твердой фазы в суспензии 8 - 25 мас. % . При реализации данного способа степень извлечения микросфер составляет 83% без использования флокулянтов. 1 з. п. ф-лы, 3 ил.

Формула изобретения RU 2 013 410 C1

1. СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ, включающий гидросепарацию водной суспензии, съем всплывших микросфер и их обезвоживание, отличающийся тем, что гидросепарацию суспензии осуществляют при скорости нисходящего потока 5 - 7 м/ч. 2. Способ по п. 1, отличающийся тем, что гидросепарацию осуществляют при содержании твердой фазы в суспензии 8 - 25 мас. % .

RU 2 013 410 C1

Авторы

Маркелов В.М.

Сонин Б.А.

Ершова Г.П.

Сидорова Е.А.

Яковлева В.И.

Павловская Н.С.

Жарикова Л.Ю.

Даты

1994-05-30Публикация

1991-08-09Подача