СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР Российский патент 2005 года по МПК B03B7/00 C04B18/10 

Описание патента на изобретение RU2257267C2

Изобретение относится к производству микросфер из летучей золы тепловых электростанций, используемых в качестве наполнителей строительных материалов и легких цементов, композиционных материалов, при производстве легких герметиков, замазок, красителей, клеев, композиционных древесных материалов, взрывчатых веществ, для получения материалов, способных сорбировать токсичные металлы при консервации и длительном хранении радиоактивных отходов.

При сжигании углей в топках котлов из минеральных примесей образуются алюмосиликатные полые микросферы - легкий сыпучий мелкодисперсный порошок, состоящий из отдельных сферических полых прочных частиц. Содержание полых микросфер в золе-уноса на различных тепловых электростанциях (ТЭС) изменяется от десятых долей процента до нескольких процентов. Размер микросфер изменяется от 10 до 400 мкм. Преобладающее количество микросфер имеет диаметр 100-200 мкм. Несмотря на то, что микросферы являются незаменимым компонентом в строительных материалах и многих других ценных материалах, в настоящее время зольные микросферы вместе с золой уноса выводят на золоотвалы, где они скапливаются в больших количествах и создают дополнительную экологическую напряженность в районах электростанций. Одной из причин такой утилизации микросфер является отсутствие надежного и эффективного способа выделения микросфер как товарного продукта из золы-уноса ТЭС.

Авторы патентов США № 4121945 и № 4652433 предлагают выделять микросферы из водной суспензии летучей золы ТЭС добавлением в нее различных реактивов, перемешиванием в последовательно установленных смесителях с добавлением в последней стадии смешивания пенообразователя. На заключительной стадии выделения микросфер применяют флотацию для максимального удаления несгоревшего углерода, отстаивание и сгущение оставшейся части зольных уносов с концентрацией микросфер в сливе, съем и обезвоживание микросфер.

Недостатками данных способов являются большие затраты и сложность получения микросфер, т.к. технология получения микросфер включает большое количество операций смешения, флотацию и удаление несгоревшего углерода с применением пенообразователя. Необходимость использования флоакулянтов для увеличения скорости всплытия микросфер приводит к удорожанию процесса.

Известны способы выделения микросфер из водной суспензии зольных отходов ТЭС, в которых практически отсутствуют химические реактивы, а используются специальные конструкции классификаторов для выделения микросфер (патенты РФ № 2047379, № 2080934). По предложению авторов данных патентов разделение материалов по плотности можно проводить в специальной емкости, снабженной механическими приспособлениями для сбора микросфер, их отвода по трубопроводу с помощью системы коромыслов, противовесов и запорной арматуры. Предложенные приспособления по мнению авторов могут работать в непрерывном автоматическом режиме на ТЭС.

Основным недостатком данных изобретений является неэффективность и низкая производительность по количеству получаемой микросферы, поскольку через предлагаемые устройства необходимо пропускать весь водный поток смываемой золы. Таким образом, приемные емкости данных приспособлений и все механические устройства должны обрабатывать миллионы тонн водного потока, в котором содержатся сотые доли процента искомой микросферы. Для выделения микросфер из золы-уноса на одной ТЭС потребуется огромная батарея многочисленных приспособлений, предлагаемых по данным патентам.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ получения микросфер из водной суспензии летучей золы тепловых электростанций, описанный в патенте РФ 2013410 (прототип). Авторы предлагают способ получения микросфер, включающий гидросепарацию в установке, включающей ряд пирамидальных емкостей, съем всплывших микросфер и их обезвоживание на ленточном вакуум-фильтре. Гидросепарацию осуществляют в нисходящем потоке при скорости его 5-7 м/ч. Авторами установлено, что при данной скорости нисходящего потока суспензии гидросепарация в нем происходит наиболее эффективно, т.к. микросферы, скорость всплытия которых больше скорости нисходящего потока, концентрируются в верхнем слое суспензии.

Одним из преимуществ данного прототипа перед вышеприведенными аналогами является возможность максимального извлечения микросфер из зольных уносов без применения флоакулянта и других химических реактивов. Однако и этот способ получения микросфер из золы-уноса ТЭС не лишен основного недостатка, характерного для упомянутых патентов и других научных публикаций по данному вопросу, - необходимость использования сложных механизмов для гидросепарации легкой фракции зольных уносов, строгое соблюдение и контроль всех параметров многоступенчатого процесса выделения микросфер и использование каскада классификаторов, через которые проходит весь поток смываемых зольных уносов, для увеличения производительности. Кроме того, в упомянутом способе не указываются способы сушки и классификации по размерам микросфер. Сложность этих технологических этапов определяется малыми значениями диаметров и объемного удельного веса микросфер.

Решаемая техническая задача состоит в том, чтобы создать эффективный способ выделения микросфер из зольных уносов ТЭС с использованием доступных средств, получить товарные фракции данного продукта с заданными характеристиками.

Целью предлагаемого изобретения является эффективность, техническая надежность и интенсификация извлечения микросфер за счет съема влажных микросфер, гидросепарация которых произошла естественным способом в золоотвальном водоеме.

Поставленная цель достигается описываемым способом получения полых алюмосиликатных микросфер из водной суспензии летучей золы тепловых электростанций, включающим в себя гидросепарацию, съем всплывших микросфер, их обезвоживание и сушку.

1. Новым является то, что съем всплывших микросфер производят мобильной установкой - эжекторным насосом с фильтрующей насадкой, при скорости всасывания водной суспензии 20-250 м3/час с поверхности понтонного поддона площадью 5-100 м2, прижатого к нижнему слою микросфер, при этом производят разделение полых микросфер по фракциям в многоступенчатом вращающемся барабанном классификаторе с самоочищающимися поверхностями сеток для рассева микросфер, при этом:

- гидросепарацию водной суспензии летучей золы осуществляют в золоотвальном водоеме;

- обезвоживание микросфер осуществляют в пористых контейнерах фильтрацией воды через отверстия с размерами не более 10 мкм;

- сушку микросфер осуществляют в потоке разогретого воздуха во вращающемся барабане, выходное отверстие которого экранировано сеткой с размерами отверстий не более 10 мкм.

Проведенные испытания показали, что предлагаемый способ получения полых алюмосиликатных микросфер за счет совокупности отличительных признаков позволил быстро и легко собрать верхний слой золоотвального водоема, который представляет собой влажные микросферы с минимальным количеством примесей; благодаря использованию эжекторного насоса с фильтрующей насадкой было исключено повреждение полых микросфер; фильтрация воды, т.е. обезвоживание микросфер, в пористом контейнере с объемом 1 м происходила в течение 40-60 секунд; сушка во вращающемся барабане с экранной сеткой позволила практически исключить потери товарной фракции микросфер; разделение микросфер по фракциям в многоступенчатом вращающемся барабанном классификаторе не вызывало технических проблем.

Из доступных источников патентной и научно-технической литературы нам неизвестна заявляемая совокупность отличительных признаков, следовательно, предлагаемый способ отвечает критерию “существенные отличия”.

Смыв зольных отходов в золоотвальный водоем не представляет технических и экономических трудностей. Благодаря естественной гидросепарации в большом объеме водоема полые микросферы концентрируются на поверхности воды, образуя слой толщиной до 30-50 см. Все примеси, удельный вес которых больше 1,0 г/см3, оседают на дно водоема, таким образом происходит очистка полых микросфер от примесей и разрушенных микросфер, внутрь которых может попасть вода. Невысокая скорость всплытия микросфер и еще меньшая скорость оседания мелких примесей и несгоревших частиц углерода не лимитируют производительность получения микросфер по предлагаемому изобретению, т.к. съем микросфер с поверхности водоема производят по мере их накопления, а скорость съема определяется мощностью насоса.

Для съема микросфер с поверхности водоема с минимальным количеством воды предлагается изолировать всплывшие микросферы понтонным поддоном (экраном) с площадью от 5 м2 до 100 м2, в зависимости от площади золоотвального водоема. Благодаря тому что данный поддон плотно прижимается к нижнему слою микросфер, съем микросфер происходит с минимальным количеством воды, засасываемой эжекторным насосом. Насосная установка расположена на автомобильном шасси, что позволяет производить забор микросфер с удобного места золоотвальных водоемов, расположенных в различных регионах, и в удобное время. Использование эжекторных насосов предохраняет полые микросферы от механических повреждений. При заборе верхнего слоя микросфер с производительностью 50 м3/час требуется не более 20 рабочих дней для производства 3000 тонн сухих микросфер.

Пример осуществления способа при средних значениях режимных параметров.

Съем микросфер с поверхности золоотвального водоема производят с помощью эжекторного насоса с автономным питанием от дизельной мобильной установки. Эжекторный насос снабжен фильтром, который предохраняет от всасывания механических примесей с размерами более 1-3 мм. Всасывание микросфер проводят при производительности насоса 50 м3/час над понтонным поддоном площадью 10 м2, который легко перемещается в верхнем слое золоотвального водоема с помощью двух тросов. По сливному рукаву влажные микросферы поступают в контейнеры с емкостью 1 м3 типа “Big-Bag”, выполненные из пористой ткани с размерами отверстий не более 10 мкм. Контейнеры расположены на металлическом каркасе для возможности обезвоживания (естественного слива воды, поступившей с микросферами). На металлическом каркасе подвешивают 20 контейнеров, которые непрерывно заполняют влажными микросферами одним оператором. По мере заполнения контейнеров и слива из них воды контейнеры с обезвоженными микросферами направляют на сушку и классификацию по фракциям. Время заполнения и обезвоживания 20 контейнеров составило 80 минут.

Поскольку удельная поверхность микросфер составляет около 200 м2/г, количество адсорбированной воды на поверхности микросфер в виде тонкой пленки составляет 40-50% от массы микросфер. Эта вода, удерживаемая поверхностными адсорбционными ван-дер-вальсовыми силами, может быть удалена в сушильном агрегате при температуре 150-170°С.

Сушку микросфер проводят в двух параллельно работающих вращающихся барабанах с общей мощностью 14 КВт. Диаметр барабанной сушилки 400 мм, длина 1500 мм. Производительность такой установки (двух вращающихся барабанов) составляет 500-700 кг/час по сухой микросфере. В связи с тем, что отверстие для отходящих газов сушильного барабана экранировано сеткой с размерами не более 10 мкм, потери микросфер при сушке составили не более 3,0 мас.%.

Высушенные микросферы направляют на рассев по фракциям в трехсекционные вращающиеся барабанные классификаторы. Для обеспечения производительности 500 кг/час по готовому товарному продукту используют сушильную установку, состоящую из двух барабанных классификаторов с диаметром 900 мм и длиной 2100 мм. Поверхность каждой секции классификатора выполнена из сеток с размерами ячеек в соответствии с требуемыми фракциями микросфер. В данном примере использовали сетки с размерами ячеек 80 мкм; 120 мкм и 250 мкм. В первой (загрузочной) секции была самая мелкая сетка - 80 мкм, и из нее выгружались микросферы с размерами 10-80 мкм в количестве 3,5 мас.% от количества загружаемых микросфер. Более крупные микросферы поступали во вторую секцию, т.к. классификатор расположен под углом 3°, и из нее выгружали микросферы с размерами соответственно 80-120 мкм в количестве 21,5 мас.%; из третьей - 120-250 мкм в количестве 65,0 мас.%. Крупная фракция микросфер с размерами более 250 мкм и в количестве 10,0 мас.%, которая не просеялась через данные сита, высыпалась через выходное отверстие в четвертый бункер.

Проведенные испытания показали, что при увеличении площади понтонного поддона до 100 м2 можно увеличить производительность эжекторного насоса до 250 м3/час, при этом время заполнения и обезвоживания 20 контейнеров не изменилось, т.е. составило 80 минут, т.к. лимитирующей стадией является обезвоживание или фильтрация воды через стенки контенера. Изменение режимных параметров (производительность насоса и площадь понтонного поддона), как показали исследования, проведенные в Центре по испытаниям и сертификации строительных материалов “Цемисон”, не влияет на физико-химические свойства полученных микросфер. Свойства микросфер могут незначительно изменяться в зависимости от места их отбора, что объясняется колебаниями в химико-минералогическом составе углей. Поэтому в таблицах 1, 2 и 3 приведены характеристики двух проб микросфер, отобранных в разных местах золоотвального водоема.

Из практики известно, что допустимое содержание примесей, загрязняющих микросферы, не должно превышать 2,0 мас.%. К примесям, загрязняющим микросферы, относятся частицы несгоревшего угля, частицы золы и микросферы, плотностью более 1000 кг/ м3, от их содержания зависит качество материалов, в которых используются микросферы. Поскольку микросферы с плотностью более 1000 кг/ м3 при гидросепарации осели на дно золоотвального водоема, количество примесей в полученных микросферах входит в показатель “потери при прокаливании”, который, как видно из таблицы 3, менее 2,0 мас.%. Таким образом, микросферы, полученные по предлагаемому способу, по основным показателям соответствуют требованиям, предъявляемым к данным материалам.

Таблица 1.
Физические характеристики зольных микросфер
№пробыВлажностьНасыпная объемная масса, кг/м3Плотность, г/м3Удельная поверхность, г/м2№148,93562,23179№247,13682,27159

Таблица 2.
Гранулометрический состав зольных микросфер
Наименование показателяЕдиница измеренияЗначения показателя для пробы  №1№2D[4,3] Средний размер частицМкм169,07183,51D[v, 0.1] 10% частиц размером доМкм99,52114,0D[v, 0.5] медианный размер частицМкм163,74180,66D[v, 0.9] 90% частиц размером доМкм247,99258,84

Таблица 3.
Химико-минералогическая характеристика зольных микросфер
№пробыСодержание, мас.% П.п.п.SiO2Аl2O32О3CaOMgONa2O2ОTiO210,7760,4119,167,662,494,581,562,310,9121,5660,0819,247,572.414.551,562,220,91Фазовый состав, мас.%: стеклофаза - 80,0, кварц β-SiO2-10,0, прочие составляющие (в т.ч. СаСО3)-10,0.

Предложенный способ получения микросфер из летучей золы тепловых электростанций отличается высокой эффективностью и простотой технического решения, исключает использование химических реагентов и сложных стационарных установок для гидросепарации. Применение мобильной насосной установки для съема всплывших микросфер позволяет производить отбор микросфер с золоотвальных водоемов различных ТЭС независимо от их расположения.

Похожие патенты RU2257267C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2003
  • Иванов В.В.
  • Долгих Ф.А.
  • Ершов С.В.
RU2236905C1
Способ комплексной переработки золы отвалов тепловых электростанций и установка для комплексной переработки золы отвалов тепловых электростанций 2016
  • Делицын Леонид Михайлович
  • Рябов Юрий Васильевич
  • Попель Олег Сергеевич
  • Гаджиев Шамиль Абдуллаевич
RU2614003C2
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 1991
  • Маркелов В.М.
  • Сонин Б.А.
  • Ершова Г.П.
  • Сидорова Е.А.
  • Яковлева В.И.
  • Павловская Н.С.
  • Жарикова Л.Ю.
RU2013410C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2014
  • Яцек Эдвард Дзедзиц
RU2583794C1
СПОСОБ И УСТРОЙСТВО КОМБИНИРОВАННОГО СБОРА МИКРОСФЕР ИЗ ЗОЛЫ УНОСА 2008
  • Аралов Сергей Викторович
  • Домбровский Владимир Борисович
  • Ефремов Дмитрий Викторович
  • Выборнов Владимир Владимирович
RU2407593C2
ЛЕГКИЙ ТАМПОНАЖНЫЙ ЦЕМЕНТ (ВАРИАНТЫ) 2003
RU2256774C2
СПОСОБ И УСТРОЙСТВО СБОРА МИКРОСФЕР ИЗ ЗОЛЫ-УНОСА 2008
  • Аралов Сергей Викторович
  • Домбровский Владимир Борисович
  • Ефремов Дмитрий Викторович
  • Выборнов Владимир Владимирович
RU2407857C2
СПОСОБ ПЕРЕРАБОТКИ ЗОЛЫ И/ИЛИ ШЛАКА КОТЕЛЬНЫХ И ТЕПЛОЭЛЕКТРОСТАНЦИЙ 2007
  • Бочкарев Алексей Мартемьянович
  • Горюшкин Владимир Федорович
  • Кулагин Николай Михайлович
  • Ларин Валерий Иванович
RU2344887C1
ОБЛЕГЧАЮЩАЯ ДОБАВКА ДЛЯ ЦЕМЕНТНЫХ СМЕСЕЙ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2009
  • Ермаков Анатолий Александрович
  • Цыпкин Евгений Борисович
  • Волкова Людмила Валериевна
RU2419647C1
СПОСОБ ПОЛУЧЕНИЯ АППРЕТИРОВАННОЙ АЛЮМОСИЛИКАТНОЙ МИКРОСФЕРЫ 2012
  • Предтеченский Михаил Рудольфович
  • Смаль Андрей Николаевич
RU2509738C2

Реферат патента 2005 года СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР

Изобретение относится к производству микросфер из летучей золы тепловых электростанций, используемых в качестве наполнителей строительных материалов и легких цементов, композиционных материалов, при производстве легких герметиков, замазок, красителей, клеев, композиционных древесных материалов, взрывчатых веществ, для получения материалов, способных сорбировать токсичные металлы при консервации и длительном хранении радиоактивных отходов. Способ получения микросфер из водной суспензии летучей золы тепловых электростанций включает в себя гидросепарацию, съем всплывших микросфер, их обезвоживание, сушку. При этом съем всплывших микросфер производят мобильной установкой - эжекторным насосом с фильтрующей насадкой, при скорости всасывания водной суспензии 20-250 м3/час с поверхности понтонного поддона площадью 5-100 м2, прижатого к нижнему слою микросфер, а разделение полых микросфер по фракциям в многоступенчатом вращающемся барабанном классификаторе с самоочищающимися поверхностями сеток для рассева микросфер. Технический результат - повышение эффективности, технической надежности и интенсификации извлечения микросфер. 3 з.п.ф-лы, 3 табл.

Формула изобретения RU 2 257 267 C2

1. Способ получения микросфер из водной суспензии летучей золы тепловых электростанций, включающий в себя гидросепарацию, съем всплывших микросфер, их обезвоживание, сушку, отличающийся тем, что съем всплывших микросфер, производят мобильной установкой - эжекторным насосом с фильтрующей насадкой, при скорости всасывания водной суспензии 20-250 м3/ч с поверхности понтонного поддона площадью 5-100 м2 , прижатого к нижнему слою микросфер, при этом производят разделение полых микросфер по фракциям в многоступенчатом вращающемся барабанном классификаторе с самоочищающимися поверхностями сеток для рассева микросфер.2. Способ по п.1, отличающийся тем, что гидросепарацию водной суспензии летучей золы осуществляют в золоотвальном водоеме.3. Способ по п.1, отличающийся тем, что обезвоживание микросфер осуществляют в пористых контейнерах фильтрацией воды через отверстия с размерами не более 10 мкм.4. Способ по п.1, отличающийся тем, что сушку микросфер осуществляют в потоке разогретого воздуха во вращающемся барабане, выходное отверстие которого экранировано сеткой с размерами отверстий не более 10 мкм.

Документы, цитированные в отчете о поиске Патент 2005 года RU2257267C2

СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 1991
  • Маркелов В.М.
  • Сонин Б.А.
  • Ершова Г.П.
  • Сидорова Е.А.
  • Яковлева В.И.
  • Павловская Н.С.
  • Жарикова Л.Ю.
RU2013410C1
Способ переработки золошлаковых смесей тепловых электростанций 1989
  • Кузин Алексей Семенович
  • Шишикин Евгений Александрович
SU1697885A1
Технологическая линия для изготовления полых стеклянных микросфер 1990
  • Хазанов Виктор Евсеевич
  • Стеценко Владимир Яковлевич
  • Шумский Владимир Иванович
  • Чарный Евгений Ильич
  • Цветков Евгений Михайлович
  • Старостин Михаил Иванович
  • Семенцова Наталья Викторовна
SU1731745A1
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ВОДНОЙ СУСПЕНЗИИ ЛЕТУЧЕЙ ЗОЛЫ ТЭС 1991
  • Тумашов В.Ф.
  • Чернявский И.Я.
  • Шапкин Е.Н.
RU2017696C1
СПОСОБ ПОЛУЧЕНИЯ МИКРОСФЕР ИЗ ЛЕТУЧЕЙ ЗОЛЫ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2003
  • Иванов В.В.
  • Долгих Ф.А.
  • Ершов С.В.
RU2236905C1
DE 19727172 A, 05.02.1998
US 4121945 A, 24.10.1978.

RU 2 257 267 C2

Даты

2005-07-27Публикация

2003-06-20Подача