Изобретение относится к квантовой электронике и может быть использовано в газовых лазерах.
Наиболее близким по технической сущности к изобретению является электрод, токоподводящий участок которого заделан в керамику [1].
Однако при контакте с плазмой разряда керамика выгорает, чем снижается ресурс электрода, а продукты разложения вызывают деградацию лазерной смеси, чем снижается энерговклад в разряд и мощность лазера.
Целью изобретения является повышение ресурса работы электрода и увеличение мощности лазера.
Это достигается тем, что в известном электроде газового лазера токоподводящий участок выполнен в виде стержня, а изолятор - в виде втулки с упорным буртиком, на изоляторе с возможностью по крайней мере возвратно-поступательного движения вдоль оси электрода установлен металлический экран в виде втулки с внутренним фланцем так, что край отверстия во фланце примыкает к поверхности электрода по линии, разделяющей токоподводящий и эмитирующий участки, а между экраном и упорным буртиком изолятора установлена дополнительная металлическая втулка.
На фиг.1 представлен общий вид варианта исполнения электрода; на фиг.2 - схема, поясняющая принцип работы электрода.
Электрод содержит эмитирующий участок 1 (на фиг.1 - это выделенный толстой линией торец металлического стержня), токоподводящий участок 2, изолятор 3, экран 4, установленный в контакт с поверхностью электрода по краю эмитирующего участка 1, и металлическую втулку 5, которая упирается во фланец на изоляторе 3 и фланец на экране 4. Экран 4 может перемещаться по изолятору 3 вдоль оси электрода, например за счет посадки с натягом.
Электрод работает следующим образом.
После сборки электрод вставляется в разрядную камеру лазера без всякой дополнительной регулировки. После подачи напряжения зажигается разряд, который горит как с эмитирующей поверхности 1, так и с поверхности экрана 4 и втулки 5, поскольку существует электрический контакт с токоподводящим участком 2. Выделение энергии в разряде обусловливает нагревание экрана 4 и втулки 5 и вызывает их тепловое расширение.
Перемещение втулки 5 на малое расстояние Δ (фиг.2) приводит к смещению экрана 4 вдоль оси электрода пока не нарушится электрический контакт с токоподводящим участком 2. При этом между экраном и токоподводом образуется минимально возможный зазор δ вне зависимости от давления в лазерной смеси и рода газа. Тем самым предотвращается проникновение плазмы разряда между поверхностью электрода и экраном, поскольку минимальный зазор заведомо меньше толщины катодного падения.
Из-за отсутствия электрического контакта с токоподводом разряд с поверхности экрана и втулки прекращается. При этом в условиях протока лазерной смеси возможно остывание экрана и втулки, что вызовет уменьшение их линейных размеров. Однако экран при этом останется практически на прежнем месте, зазор δ не изменится и работоспособность электрода сохранится.
Если в силу каких-либо технологических отклонений (например, нагрев токоподвода) произойдет замыкание на экран, то процесс нагрева и саморегулировки зазора минимальной величины повторится. В случае секционированных электродов каждый из них будет работать независимо, что резко упрощает наладку и регулировку лазера. Компенсировать неизбежное распыление эмитирующей поверхности 1 позволит проведение регламентных работ, которые заключаются в возвратном сжатии элементов электрода вдоль оси до контакта экрана 4 с токоподводящим участком 2. Тем самым также упрощается эксплуатация лазера.
Предохранение от контакта изолятора с плазмой позволит увеличить ресурс электрода, а отсутствие продуктов плазмохимических реакций предотвратить преждевременную деградацию смеси и будет способствовать увеличению мощности лазера, чем и достигается положительный эффект предложенного устройства.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПОДВОДА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ | 1991 |
|
RU2007471C1 |
СПОСОБ НАГРЕВА МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ | 1990 |
|
RU2022032C1 |
ИЗМЕРИТЕЛЬ СКОРОСТИ ГАЗОВОГО ПОТОКА | 1992 |
|
RU2024875C1 |
ЭЛЕКТРОДУГОВАЯ УСТАНОВКА ДЛЯ НАГРЕВА ГАЗОВ | 1991 |
|
RU2106769C1 |
УСТРОЙСТВО ДЛЯ ПЛАЗМЕННОЙ ОБРАБОТКИ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ | 1991 |
|
RU2030484C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЗАМОРОЖЕННЫХ ГРАНУЛ ЖИДКОСТИ В ВАКУУМЕ | 1991 |
|
RU2017052C1 |
ТЕПЛООБМЕННАЯ ПОВЕРХНОСТЬ | 1990 |
|
RU2030702C1 |
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МИНЕРАЛЬНОГО ВОЛОКНА | 1991 |
|
RU2021217C1 |
ГАЗОВЫЙ ЛАЗЕР | 1990 |
|
SU1804262A1 |
РАЗРЯДНАЯ КАМЕРА ГАЗОВОГО ЛАЗЕРА | 1990 |
|
SU1797435A1 |
Сущность изобретения: электрод газового лазера содержит изолятор на поверхности токоподводящего участка, а также металлический экран, закрепленный на изоляторе с возможностью поступательно-возвратного перемещения. Экран имеет контакт с поверхностью электрода по краю эмитирующего участка. Между изолятором и экраном дополнительно установлена металлическая втулка в упор вдоль оси электрода. 2 ил.
ЭЛЕКТРОД ГАЗОВОГО ЛАЗЕРА, содержащий токоподводящий и эмитирующий участки, а также расположенный на поверхности токоподводящего участка изолятор, отличающийся тем, что токоподводящий участок выполнен в виде стержня, а изолятор - в виде втулки с упорным буртиком, на изоляторе с возможностью по крайней мере возвратно-поступательного движения вдоль оси электрода установлен металлический экран в виде втулки с внутренним фланцем так, что край отверстия во фланце примыкает к поверхности электрода по линии, разделяющей токоподводящий и эмитирующий участки, а между экраном и упорным буртиком изолятора установлена дополнительная металлическая втулка.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Голубев В.С | |||
и Лебедев Ф.В | |||
Инженерные основы создания технологических лазеров, М., 1988, с.50. |
Авторы
Даты
1994-08-30—Публикация
1991-06-10—Подача