Изобретение относится к криогенной технике, преимущественно к криогенным сосудам для сверхпроводящих магнитов (СПМ).
При создании подобных изделий приходится решать как традиционные проблемы, присущие всем криососудам (например, уменьшение теплопритоков и т.п. ), так и специфические, связанные с назначением и конструкцией СПМ.
Известен криогенный сосуд, содержащий внутреннюю и внешнюю емкости. Емкости жестко соединены между собой тепловыми опорами, которые включают два кольца, связанные стеклопластиковыми стяжками, расположенными тангенциально относительно внутреннего кольца и под углом к плоскости опор. Такая конструкция имеет хорошую несущую способность, обеспечивает надежную фиксацию внутренней емкости по отношению к наружной и минимальные теплопотери за счет материала и формы выполнения стяжек.
Однако известное решение нельзя использовать в криогенных сосудах для СПМ. Причина в том, что в межполюсном зазоре СПМ имеется канал для прохождения пучка заряженных частиц. Форма канала - вытянутая, почти на всю ширину СПМ. Поэтому, чтобы применить известное решение, нужно ось тепловой опоры выполнить с диаметром, соизмеримым с диаметром СПМ. Это привело бы к увеличению диаметра наружной емкости (так как длина стеклопластиковых стяжек не может быть уменьшена без увеличения теплопотерь) и, следовательно, к вынужденному удорожанию конструкции в целом.
Кроме того, в известном решении производят натяжение каждой стяжки в отдельности. А так как натянуть одинаково их практически не удается, то снижается надежность работы устройства.
Цель изобретения - уменьшение габаритов без увеличения теплопотерь.
Поставленная цель достигается тем, что в известном криогенном сосуде, содержащем герметичный корпус, внутреннюю и внешнюю емкости, жестко соединенные между собой тепловой опорой, имеющей опорное кольцо и стяжки, расположенные тангенциально относительно этого кольца и под углом к плоскости опоры, каждая пара стяжек, расположенная под углом одна к другой, одними концами закреплена на общих осях, а другими поочередно, с помощью шарниров - на внешней и внутренней емкостях. Общие оси установлены на опорном кольце с возможностью радиального перемещения, при этом опорное кольцо расположено между внешней и внутренней емкостями.
Сопоставительный анализ с прототипом показывает, что заявляемый криогенный сосуд отличается конструкцией тепловой опоры, что соответствует критерию "новизны".
Сравнение с другими известными решениями показывает, что отдельные элементы заявленного широко известны:
применение "ломаных" стержней с целью уменьшения габаритов, например, в зонтах;
расположение элементов крепления равномерно по окружностям;
узел, обеспечивающий радиальное перемещение стяжек.
Однако другие конструктивные признаки, характеризующие расположение в связи стяжек авторам неизвестны. То, что каждая пара стяжек одними концами закреплена на общих осях, а другими - поочередно и с помощью шарниров на внешней и внутренней емкостях, обеспечивает не только уменьшение габаритов, но и жесткую фиксацию этих емкостей одна относительно другой. Это позволяет сделать вывод о соответствии критерию "существенные отличия".
На фиг.1 изображен предлагаемый криогенный сосуд, общий вид; на фиг.2 - разрез по А-А на фиг.1; на фиг.3 - узел I на фиг.1; на фиг.4 - разрез по В-В на фиг.3.
В герметичном корпусе 1 размещен СПМ 2, жестко соединенный с азотным экраном 3 с помощью подвески на фигурах не обозначена. СПМ представляет собой дипольный магнит, в теле которого имеются сквозные каналы 4 для протекания жидкого гелия и межполюсный зазор 5. Герметичный корпус 6 СПМ выполнен из нержавеющей стали. Он имеет патрубки 7 и 8 для провода и отвода жидкого гелия.
В межполюсном зазоре 5 размещается канал 9 для транспортировки пучка заряженных частиц. Геометрия канала 9 определяют форму межполюсного зазора 5 в горизонтальной плоскости. Соответствующие отверстия (для канала 9, на фигурах не обозначены) имеются в азотном экране 3 и корпусе 1. Азотный экран 3 жестко установлен на тепловых опорах 10 с заглушками 11. Кроме того, он со всех сторон окружает корпус 6 СПМ 2. Подвеска (их две - по обоим торцам сосуда), с помощью которой СПМ 2 в корпусе 6 жестко соединен с азотным экраном 3, выполнена в виде стеклопластиковых стяжек 12 и 13 и опорного кольца 14. Каждая пара стяжек 12 и 13 одними концами установлена на оси 15, а эта ось - в отверстии резьбовой вилки 16, которая в свою очередь закреплена на опорном кольце 14 с помощью пластинчатой пружины 17 и гайки 18. Вторые концы стяжек 12 закреплены шарнирно с помощью осей 19, шайб 20 и шплинтов 21 на стенке сосуда 3, а стяжки 13 с помощью аналогичного крепления - на корпусе 6. Все крепления равномерно расположены по соответствующим окружностям. Пары стяжек 12 и 13 расположены под углом α друг к другу в плоскости, перпендикулярной оси криососуда и под углом β между собой в продольной плоскости.
Вначале производят натяжение стяжек 12 и 13 с помощью гаек 18. При этом резьбовая вилка 16 перемещается вместе с осью 15.
Схема сил при натяжении стяжек 12 и 13 показана на фиг.5.
F=2P·sin , где F - усилие в винтовой паре;
Р - усилие натяжения стяжек;
α - угол между стяжками.
П р и м е р. Р = 500 кг. α = 140-180оС
при α = 140о - F = 342 кг
α ≈ 180о - F -> 0
Это позволяет применить пружины 17 с малой жесткостью, что обеспечивает надежную плавную работу натяжных элементов, а, следовательно, равномерность натяжения стяжек. При заливке хладагента в криогенный сосуд (во внешнюю емкость заливается азот, а во внутреннюю - гелий) происходят тепловые деформации, которые компенсируются упругими деформациями пружин 17, обеспечивая постоянство натяжения стяжек 12 и 13.
Тепловой поток от внешней емкости к внутренней распространяется по стяжкам 12, через оси 15, резьбовые вилки 16, опорное кольцо 14 и стяжки 13.
Очевидно, что, по сравнению с аналогичным криососудом, т.е. с прототипом, диаметр предлагаемого можно уменьшить (при прочих равных условиях) на величину, равную сумме длин двух стяжек. В нашем случае длина стяжки равна 122 мм. Кроме того, стяжки натягиваются более равномерно, что повышает надежность.
название | год | авторы | номер документа |
---|---|---|---|
Тепловая опора для криогенных емкостей | 1973 |
|
SU573673A1 |
Устройство для установки сосудов | 1981 |
|
SU1011944A1 |
Криогенный резервуар для хранения и транспортировки сжиженных газов | 1986 |
|
SU1346901A1 |
ПЛАТФОРМА ДЛЯ СБОРКИ И ЗАКРЕПЛЕНИЯ УЗЛОВ УГОЛЬНОГО КОМБАЙНА | 1990 |
|
RU2012798C1 |
КОМПРЕССИОННО-ДИСТРАКЦИОННЫЙ АППАРАТ | 2004 |
|
RU2260397C1 |
СТЕКЛОПЛАСТИКОВАЯ ТРУБА-ОБОЛОЧКА | 1993 |
|
RU2079762C1 |
Теплоизолированный сосуд для сжиженного газа | 1990 |
|
SU1746108A2 |
ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС | 2000 |
|
RU2199703C2 |
Устройство для лечения деформаций стоп | 1990 |
|
SU1741795A1 |
Уплотнительная криокомпозиция для герметизации соединений деталей криогенных сосудов и арматуры и способ её получения | 2023 |
|
RU2827141C1 |
Сущность изобретения: криогенный сосуд содержит внутреннюю и внешнюю емкости, жестко соединенные между собой тепловыми опорами. Тепловая опора имеет опорное кольцо и стеклотекстолитовые стяжки, расположенные тангенциально относительно этого кольца и под углом к плоскости опоры. Поставленная цель достигается тем, что стяжки выполнены "ломаными", при этом одни концы каждой пары стяжек установлены на общих осях, а другие поочередно закреплены на наружной и внутренней емкостях. 4 ил.
КРИОГЕННЫЙ СОСУД, содержащий герметичный корпус, внутреннюю и внешнюю емкости, жестко соединенные между собой тепловой опорой, имеющей опорное кольцо и стяжки, расположенные тангенциально относительно этого кольца и под углом к плоскости опоры, отличающийся тем, что, с целью уменьшения габаритов без увеличения теплопотерь, каждая пара стяжек расположена под углом одна к другой и одними концами закреплена на общих осях, а другими поочередно с помощью шарниров - на внешней и внутренней емкостях, оси установлены на опорном кольце с возможностью радиального перемещения, при этом опорное кольцо расположено между емкостями коаксиально им.
Тепловая опора для криогенных емкостей | 1973 |
|
SU573673A1 |
Печь для сжигания твердых и жидких нечистот | 1920 |
|
SU17A1 |
Авторы
Даты
1994-10-15—Публикация
1991-04-05—Подача