Изобретение относится к лазерной технике и может быть использовано в качестве жидкостного теплоносителя.
Известно применение в качестве жидкостных теплоносителей, в частности, охлаждающих жидкостей и основы жидкостных светофильтров для лазеров, воды, фторированных углеводородов, смеси этиленгликоля с водой, спиртово-водных и спиртово-алкиловых растворов.
Известно также применение в качестве негорючих теплоносителей полисилоксанов и рассолов.
В реальных системах охлаждения наиболее широко применяется вода, смесь этиленгликоля с водой, водно-спиртовые смеси, а также растворы NaNO2 в воде.
Однако узкий температурный диапазон работоспособности воды исключает возможность ее использования в специальных системах охлаждения. Спиртовые растворы не пригодны в указанных целях ввиду их пожароопасности. Смесь этиленгликоля с водой прогрессивно увеличивает кислотность при воздействии ультрафиолетового излучения, что делает практически невозможным применение жидкости в реальных системах охлаждения. Водные рассольные растворы имеют серьезный недостаток, проявляющийся в значительной коррозии материалов, находящихся в контакте с жидкостью. Недостатком полисилаксанов является значительное пенообразование либо большая вязкость, либо, в противном случае, значительная проницаемость жидкости, что затрудняет эксплуатацию теплоносителей на основе этих соединений. Существенными недостатками смесей этиленгликоля с водой также являются их повышенная токсичность и сравнительно высокая коррозионная активность по отношению к конструкционным материалам. Высокая токсичность жидкостей затрудняет их использование и накладывает жесткие требования на условия их эксплуатации. Коррозия конструкционных материалов приводит к уменьшению срока службы прибора.
Задачей изобретения является разработка жидкостного теплоносителя широкого назначения с низкой токсичностью и малой коррозионной активностью.
Указанная задача достигается использованием в качестве жидкостного теплоносителя диметил-ди-(изо-амилокси)силана.
Ранее диметил-ди-(изо-амилокси)силан был известен в качестве реактива. Другие области применения вещества не описаны.
Использование теплоносителей в системах охлаждения мощных источников излучения требует обеспечения повышенной стойкости к действию мощных световых потоков. По этой причине поиск малотоксичных жидкостей, пригодных в качестве жидкостных теплоносителей и имеющих малую коррозионную активность, требует большого объема испытаний по нетрадиционной методике.
Результаты испытаний жидкостных теплоносителей приведены в следующих примерах.
П р и м е р 1. Работоспособность жидкостных теплоносителей проверялась при размещениях их в цилиндрической кварцевой кювете с импульсной лампой накачки ИФП 800, расположенной по оси кюветы. Энергия разряда лампы W равнялась 0,2 кДж, частота повторения импульса f = 5 Гц, длительность вспышки τ≃0,2 мс. В процессе испытания контролировались спектры пропускания жидкостей в длинноволновой, ультрафиолетовой, видимой и близкой инфракрасной частях спектра и нагарообразование на поверхности машин и других элементах системы охлаждения. Было показано, что после подачи на жидкости: водный раствор NaNO2 (6%), смесь этиленгликоля (53%) с водой, диметил-ди-(изо-амилокси)силан удельной нагрузки 50 МАж/л спектры пропускания жидкостей в области длин волн 980-1000 нм не изменились. Нагары на лампе и других элементах системы охлаждения не были обнаружены.
П р и м е р 2. Проверка работоспособности теплоносителя проводилась аналогично описанной в примере 1. Использовалась лампа ИСП 3000-2 с колбой из стекла КЛБ-2, W = 3 кДж, f = 0,1 Гц, τ= 0,2 мс. При подаче на жидкости: водный раствор NaNO2 (6%), смесь этиленгликоля (53%) с водой, диметил-ди-(изо-амилокси)силан нагрузки 10 МДж/л спектры пропускания в области длин волн 280-800 нм не изменились. Нагары на лампе и других элементах системы охлаждения не были обнаружены.
Класс опасности указанных жидкостей приведен в табл.1, данные по коррозионной активности - в табл.2.
В результате проведенных испытаний показана возможность использования диметил-ди-(изо-амилокси)силана в качестве жидкостного теплоносителя.
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ЛЮМИНЕСЦИРУЮЩЕГО ЖИДКОСТНОГО ФИЛЬТРА | 1981 |
|
RU2068606C1 |
ЛЮМИНЕСЦИРУЮЩИЙ ЖИДКОСТНЫЙ ФИЛЬТР ДЛЯ НЕОДИМОВЫХ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ | 1992 |
|
RU2030824C1 |
СОСТАВ ЛЮМИНЕСЦИРУЮЩЕГО ЖИДКОСТНОГО ФИЛЬТРА ДЛЯ НЕОДИМОВЫХ ЛАЗЕРОВ | 1979 |
|
RU2069429C1 |
ЖИДКОСТНЫЙ ТЕПЛОНОСИТЕЛЬ-СВЕТОФИЛЬТР ДЛЯ ЛАЗЕРОВ | 2006 |
|
RU2307433C1 |
СПОСОБ ПОЛУЧЕНИЯ ТИОФЕН-2,5-ДИКАРБОНОВОЙ КИСЛОТЫ | 1994 |
|
RU2074184C1 |
ПРЕПАРАТ ДЛЯ ОТКАТКИ МЕХОВЫХ ШКУР | 1993 |
|
RU2061050C1 |
ЭЛЕКТРОХРОМНЫЙ СОСТАВ | 1992 |
|
RU2009530C1 |
ОХЛАЖДАЮЩАЯ ЖИДКОСТЬ | 2001 |
|
RU2213119C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТОКСИЧНОСТИ ВОДНОЙ СРЕДЫ | 1991 |
|
RU2007713C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КОМПОЗИЦИЙ СПЕКТРАЛЬНЫХ СЕНСИБИЛИЗАТОРОВ ГАЛОГЕНСЕРЕБРЯНЫХ ФОТОГРАФИЧЕСКИХ ЭМУЛЬСИЙ | 1989 |
|
SU1729224A3 |
Использовние: в лазерной технике. Сущность: применение диметил-ди-(изо-амилокси)силана структурной формулы в качестве теплоносителя с низкой токсичностью и малой коррозионной активностью для лазеров. 2 табл.
ТЕПЛОНОСИТЕЛЬ ДЛЯ ЛАЗЕРОВ.
Применение диметил-ди-изоамилоксисилана структурной формулы
в качестве теплоносителя для лазеров.
Белостоцкий Б.Р | |||
и др | |||
Основы лазерной техники | |||
М.: Сов.радио, 1972, с.356. |
Авторы
Даты
1995-03-20—Публикация
1991-08-22—Подача