Изобретение относится к области квантовой электроники и может быть использовано в неодимовых лазерах.
Для обеспечения функционирования неодимовых лазеров УФ-часть излучения лампы накачки должна полностью поглощаться фильтрующими охлаждающими жидкостями (В. М. Волынкин и др. //Опт. мех. промышленность, 1968, N 3, 65), что приводит к неиспользованию в накачке активного элемента излучения лампы, имеющего длину волны короче 400 нм. В случае замены фильтрующей добавки на люминесцирующую фильтрующую добавку происходит увеличение энергии генерации или снижение пороговой энергии лазера из-за того, что УФ-часть излучения лампы накачки, поглощенная люминесцирующей добавкой, переизлучается в область длин волн, соответствующую полосам поглощения активного элемента (D.D. Bhawalkar, L.Pandit //IEEE Quantum Electr. QE-9, 1973, 43).
Фильтр люминесцирующий жидкостный (ФЛЖ), используемый в квантовой электронике, должен обладать рядом специфических свойств, таких как поглощение УФ-части излучения лампы накачки (короче 400 нм) люминесценцией в области основных полос поглощения неодимовых сред, высоким квантовым выходом люминесценции, прозрачностью в области основных полос поглощения неодимовых активных сред, высокой фотохимической стойкостью и малым газовыделением под действием излучения лампы накачки, широким диапазоном рабочих температур, пожаровзрывобезопасностью в рабочем интервале температур.
Применение люминесцирующего жидкостного фильтра должно приводить к повышению энергии генерации лазера или к снижению пороговой энергии лазера по сравнению с использованием фильтрующих жидкостей (ФХЖ).
Целью настоящего изобретения является создание светостойкого ФЛЖ, который отличался бы повышенным ресурсом работы в лазерах.
Для достижения указанной цели в качестве люминесцирующей добавки используется 1,8-нафтоилен-[1',2']-бензимидазол в концентрации 2•10-3 1•10-2 м/л в триэтиловом эфире офтофосфорной кислоты.
Пример: были изготовлены и испытаны на ресурс в неодимовом стеклянном лазере 4 образца ФЛЖ.
1. Раствор 3-метоксибензантрона в триэтиловом эфире ортофосфорной кислоты в концентрации 1•10-3 м/л.
2. Раствор 4-амино-N-фенилнафталимида в триэтиловом эфире ортофосфорной кислоты в концентрации 1•10-3 м/л и 2•10-2 м/л.
3. Раствор родамина 6Ж (для квантовой электроники) в триэтиловом эфире ортофосфорной кислоты в концентрации 1•10-3 м/л.
4. Раствор 1,8-нафтоилен-[1',2']-бензимидазола в триэтиловом эфире ортофосфорной кислоты в концентрации 2•10-3; 5•10-3; 1•10-2 м/л.
Испытания образцов ФЛЖ на ресурс проводились в неодимовом стеклянном лазере в режиме свободной генерации; частота повторения вспышек 0,05 Гц. ФЛЖ (объем 200 см3) прокачивался через излучатель лазера, состоящий из кварцевого моноблока с каналами под лампу ИСП-600 и неодимовый стеклянный элемент из стекла ГЛС-8 ⊘ 6х100 мм, расход ФЛЖ в системе охлаждения не превышал 2 л/мин. Через каждые 100-200 вспышек измерялась энергия свободной генерации лазера с помощью измерителя мощности ИМО-2. Для контроля элементов в систему охлаждения (после тщательной промывки ее) заливалась фильтрующая охлаждающая жидкость, поглощающая вплоть до 390 нм, и измерялась зависимость энергии генерации от энергии накачки.
Энергия накачки лампы за одну вспышку составляла 121 Дж (при этом емкость разрядного контура лампы составляла 200 МкФ; индуктивность 55 МкГн; напряжение на лампе 1100 В).
Результаты испытаний образцов ФЛЖ представлены в таблице. Здесь под удельной световой нагрузкой (светостойкостью) понимается величина
,
где Wнак энергия накачки лампы за 1 вспышку, в Дж;
n количество вспышек лампы;
V объем ФЛЖ в системе охлаждения неодимового стеклянного лазера, в см3.
При одной и той же энергии накачки и при одном и том же объеме ФЛЖ в системе под ресурсом понимается количество вспышек лампы n, через которое энергия генерации неодимового лазера уменьшается на 20% от начала испытаний.
Результаты испытаний ФЛЖ на основе раствора 4-амино-N-фенилфталимида (С 1•10-2 М/л) в триэтиловом эфире ортофосфорной кислоты [шифр ФЛЖ-АМ2-51Н2] и на основе раствора 1,8-нафтоилен [1', 2']-бензимидазола (С 5•10-3 М/л) в триэтиловом эфире ортофосфорной кислоты [шифр ФЛЖ-АМ2-9Н2] подтверждены протоколом испытаний в макете изделия 25 Ф.
Таким образом, из приведенных данных видно, что применение заявляемого светостойкого фильтра люминесцирующего жидкостного (ФЛЖ) приводит к увеличению ресурса работы ФЛЖ в неодимовых лазерах более чем в 6 раз по сравнению со случаем использования раствора 4-амино-N-фенилнафталимида в триэтиловом эфире ортофосфорной кислоты (прототип).
название | год | авторы | номер документа |
---|---|---|---|
СОСТАВ ЛЮМИНЕСЦИРУЮЩЕГО ЖИДКОСТНОГО ФИЛЬТРА | 1981 |
|
RU2068606C1 |
ЛЮМИНЕСЦИРУЮЩИЙ ЖИДКОСТНЫЙ ФИЛЬТР ДЛЯ НЕОДИМОВЫХ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ | 1992 |
|
RU2030824C1 |
ЖИДКОСТНЫЙ ТЕПЛОНОСИТЕЛЬ-СВЕТОФИЛЬТР ДЛЯ ЛАЗЕРОВ | 2006 |
|
RU2307433C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКРАШЕННОГО В МАССЕ ТРИАЦЕТАТНОГО ИЛИ ПОЛИКАПРОАМИДНОГО ВОЛОКНА | 1991 |
|
RU2010900C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКРАШЕННОГО В МАССЕ АЦЕТАТНОГО ИЛИ ТРИАЦЕТАТНОГО ВОЛОКНА | 1991 |
|
RU2061811C1 |
ПЕНЕТРАНТ ДЛЯ ЛЮМИНЕСЦЕНТНОЙ ДЕФЕКТОСКОПИИ | 1990 |
|
SU1767867A1 |
ТЕПЛОНОСИТЕЛЬ ДЛЯ ЛАЗЕРОВ | 1991 |
|
RU2031499C1 |
АКТИВНАЯ СРЕДА ДЛЯ ЛАЗЕРА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 1987 |
|
SU1533607A1 |
Способ изготовления лазерного элемента | 1987 |
|
SU1459577A1 |
ЛАЗЕР НА РАСТВОРАХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ | 1979 |
|
SU882366A1 |
Использование: для приборов квантовой электроники, в частности для неодимовых лазеров. Сущность изобретения: в состав люминесцирующего жидкостного фильтра введен в качестве люминесцирующей добавки 1,8-нафтоилен [1',2'] -бензилидазол в концентрации 2•10-3....1•10-2 моль/литр относительно триэтилового эфира ортофосфорной кислоты. 1 табл.
Состав люминесцирующего жидкостного фильтра для неодимовых лазеров, состоящий из триэтилового эфира ортофосфорной кислоты и люминесцирующей фильтрующей добавки, отличающийся тем, что, с целью увеличения ресурса работы, он содержит в качестве люминесцирующей фильтрующей добавки 1,8-нафтоилен[1, '2']бензимидазол в концентрации от 2 • 10- 3 до 10- 2 моль/л.
Авторы
Даты
1996-11-20—Публикация
1979-06-11—Подача