СПОСОБ ВЫПЛАВКИ СТАЛИ Российский патент 1995 года по МПК C21C5/04 

Описание патента на изобретение RU2031960C1

Изобретение относится к черной металлургии, конкретнее к способам выплавки стали в двухванных сталеплавильных агрегатах.

Изобретение также может найти применение при производстве стали скрап-рудным процессом, в прямоточных агрегатах, сталеплавильных агрегатах непрерывного действия и конвертерах.

Известен способ выплавки стали, включающий науглероживание металла порошками, при котором ввод каждых 50-250 кг порошка чередуют по ходу плавки с продувкой окислительным газом, которую ведут в течение 3-10 мин с интенсивностью 500-1200 м3/ч [1].

Такой способ выплавки стали относится к способам выплавки стали в мартеновских печах, работающих скрап-процессом на твердой металлошихте в завалку, и не может быть реализован в условиях работы на жидком чугуне и интенсивной продувке ванны без значительного снижения производительности печи.

Наиболее близким является способ выплавки стали, включающий вдувание порошкообразного углеродсодержащего материала в жидкий металл начиная после окончания заливки чугуна и до конца плавки одновременно с продувкой кислородом, причем отношение массового расхода порошка в единицу времени к объемному расходу кислорода составляет 0,05-1,0 кг/м3 О2 [2].

Недостатками этого способа являются: низкая степень использования углеродсодержащего материала; снижение производительности агрегата; повышенный угар ферросплавов при раскислении металла в ковше.

Целью данного изобретения является повышение степени использования порошкообразного углеродсодержащего материала, увеличение стойкости огнеупоров, снижение расхода раскислителей и легирующих, увеличение выхода стали, повышение качества металла и производительности агрегата.

Поставленная цель достигается тем, что в способе выплавки стали, включающем продувку жидкого металла одновременно кислородом и порошкообразным углеродсодержащим материалом, отношение массового расхода порошка в единицу времени к объемному расходу кислорода составляет 1,1-4,5 кг/м3 О2.

При осуществлении заявляемого способа кислород подают в расплав через продувочные кислородные фурмы и кислородные сопла комбинированной кислородно-порошковой фурмы, а порошок - через порошкообразный канал комбинированной кислородно-порошковой фурмы в потоке газа-носителя (например, азота). Кислород для пневмотранспортирования порошкообразных углеродсодержащих материалов в связи с пожаро- и взрывоопасностью не используют.

Степень использования порошкообразных углеродсодержащих материалов, вдуваемых в расплав металла при их малой концентрации в газе-носителе 2-7 кг/м3 в большой степени зависит от фракционного состава порошка. Однако, вышеуказанный интервал концентрации порошка в газе-носителе характерен для работы устаревших и не использующихся в настоящее время для вдувания углеродсодержащих материалов инжекционных пылепитателей. В течение последних 10-15 лет для продувки расплава металла углеродсодержащими материалами используют аэрационные пылепитатели, работающие в интервале концентраций порошка в газе-носителе около 30 и более кг/м3.

Концентрация коксовой пыли в азоте для примера конкретного выполнения приведена в табл. 1.

Из трудов Республиканской научной конференции 15-17 декабря 1970 г. "Интенсификация металлургических процессов вдуванием порошкообразных материалов" М., Металлургия, 1972, с. 108-112 для приведенных в табл. 1 концентраций порошка в газе-носителе (азоте) известно, что "...Высокие опытные значения (до 90%) при использовании высокодисперсного графита (68% фракции менее 0,14 мм) показывают необоснованность выводов, имеющихся в некоторых работах, о нецелесообразности использования карбонизаторов с размерами частиц менее 0,15 мм". Фракционный состав коксовой пыли установок сухого тушения кокса (СТК) приведен в табл. 2.

При уменьшении отношения массового расхода порошка в единицу времени к объемному расходу кислорода менее 1,1 кг/м3 О2 (прототип) происходит следующее. Углерод вдуваемого порошка вступает во взаимодействие с закисью железа реакционной зоны, а также сгорает в кислородных струях. Проникновения углерода порошка за пределы реакционной зоны не происходит. Тепло, выделяемое при сгорании углерода в реакционной зоне (температура в ней 2000-2500оС), воспринимается расплавом последней в значительно меньшей степени, чем при окислении углерода вне реакционной зоны. Это приводит к снижению степени использования коксовой пыли, что проявляется в более низком содержании углерода в металле после окончания продувки металла кислородом при идентичности прочих условий, определяющих тепловой баланс процесса и агрегата.

Кроме того, порошок, подаваемый с низкой интенсивностью в металл в течение всего периода продувки кислородом, охлаждает реакционную зону, что приводит к снижению производительности агрегата. Уменьшение потерь металла в виде пыли, образующейся за счет испарения железа, не компенсирует снижение производительности печи.

Таким образом, в момент окончания периода доводки в ванне находится расплав с низким содержанием углерода и недостаточно высокой температурой нагрева (табл. 3), что вызывает необходимость дополнительной додувки металла кислородом с целью доведения его до заданной температуры выпуска. Додувка расплава кислородом влечет за собой увеличение переокисленности металла и шлака, что приводит к повышению износа огнеупоров и расхода раскислителей и легирующих, а также к снижению качества стали и выхода жидкого металла.

Увеличение отношения массового расхода порошка в единицу времени к объемному расходу кислорода более 4,5 кг/м3 О2 нецелесообразно по следующим причинам. Скорость растворения углеродсодержащего порошка в металле в значительной степени зависит от содержания в нем углерода. Поэтому частички коксовой пыли, локально поступающей с высокой интенсивностью в металл, не успевают раствориться в последнем, всплывают и вспенивают шлак, попадая в него. Это приводит к выбросам шлака на рабочую площадку и снижению степени использования углеродсодержащего материала.

Таким образом, в момент окончания периода доводки в ванне находится расплав с низким содержанием углерода и недостаточно высокой температурой нагрева, что вызывает необходимость дополнительной додувки металла кислородом с целью доведения его до заданной температуры выпуска. Додувка расплава кислородом влечет за собой увеличение переокисленности металла и шлака, что приводит к повышению износа огнеупоров и расхода раскислителей и легирующих, а также к снижению качества стали, производительности агрегата и уменьшению выхода жидкого металла.

П р и м е р. При выплавке стали марки 08КП в двухванном сталеплавильном агрегате емкостью ванн по 300 т в левую ванну загружают 12 т известняка и 128 т лома. После прогрева шихты заливают 202 т жидкого чугуна. По окончании заливки чугуна в ванну опускают три сводовые водоохлаждаемые фурмы, центральная из которых комбинированная, то есть кислородно-порошковая, а боковые только кислородные, и по ходу кислородной продувки подают 10,5 т коксовой пыли.

Основные технологические параметры процесса в зависимости от отношения массовой интенсивности подачи коксовой пыли к объемному расходу кислорода представлены в табл. 3.

Использование предлагаемого способа позволяет: увеличить производительность печи; повысить степень использования коксовой пыли; снизить окисленность металла и шлака, увеличить стойкость огнеупоров печи и сталеразливочного ковша; увеличить выход жидкого металла.

Похожие патенты RU2031960C1

название год авторы номер документа
СПОСОБ ВЫПЛАВКИ СТАЛИ 1991
  • Мороков В.П.
  • Руденков Э.Г.
  • Волынкина Е.П.
  • Школлер М.Б.
  • Чирихин В.Ф.
  • Белуничев Л.В.
  • Агарышев А.И.
  • Кишкин Ю.Н.
RU2034036C1
СПОСОБ ВЫПЛАВКИ СТАЛИ 2007
  • Павлов Вячеслав Владимирович
  • Девяткин Юрий Дмитриевич
  • Козырев Николай Анатольевич
  • Годик Леонид Александрович
  • Обшаров Михаил Владимирович
  • Александров Игорь Викторович
RU2347820C2
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2019
  • Кушнарев Алексей Владиславович
  • Захаров Игорь Михайлович
  • Чиглинцев Алексей Викторович
  • Котляров Алексей Александрович
  • Галченков Сергей Валерьевич
  • Егоров Владимир Анатольевич
  • Еремеев Владимир Александрович
  • Ремиго Сергей Александрович
RU2732840C1
Способ выплавки стали 1980
  • Сельский В.И.
  • Глазов А.Н.
  • Толстогузов Н.В.
  • Чирихин В.Ф.
  • Николаев А.Л.
  • Привалов М.М.
SU908096A1
СПОСОБ ВЫПЛАВКИ РЕЛЬСОВОЙ СТАЛИ 2007
  • Павлов Вячеслав Владимирович
  • Годик Леонид Александрович
  • Козырев Николай Анатольевич
  • Обшаров Михаил Владимирович
  • Александров Игорь Викторович
RU2346059C1
Способ выплавки коррозионностойкой стали в дуговой печи 1991
  • Комельков Виктор Константинович
  • Салаутин Виктор Александрович
  • Морозов Сергей Сергеевич
  • Молчанов Олег Евгеньевич
  • Гавриленко Юрий Васильевич
  • Балдаев Борис Яковлевич
  • Зверькова Галина Владимировна
  • Громов Геннадий Иванович
  • Шурыгин Александр Владимирович
SU1782240A3
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1991
  • Борисов Юрий Николаевич[Ua]
  • Махницкий Виктор Александрович[Ua]
  • Трубавин Владимир Иванович[Ua]
  • Хилько Валерий Александрович[Ua]
  • Учитель Лев Михайлович[Ua]
  • Бродский Сергей Сергеевич[Ua]
RU2037526C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1997
  • Чумаков С.М.
  • Фогельзанг И.И.
  • Давыдов Ю.Н.
  • Зинченко С.Д.
  • Бубнов А.Т.
RU2125100C1
СПОСОБ ОБРАБОТКИ МЕТАЛЛОШИХТЫ 1991
  • Мороков В.П.
  • Руденков Э.Г.
  • Чирихин В.Ф.
  • Агарышев А.И.
RU2031961C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В ЭЛЕКТРОСТАЛЕПЛАВИЛЬНОЙ ПЕЧИ 2008
  • Ерошкин Сергей Борисович
  • Демидов Константин Николаевич
  • Кузнецов Сергей Исаакович
  • Зинченко Сергей Дмитриевич
  • Краснов Алексей Владимирович
  • Борисова Татьяна Викторовна
  • Возчиков Андрей Петрович
  • Трошенков Даниил Борисович
  • Петров Анатолий Александрович
RU2374329C1

Иллюстрации к изобретению RU 2 031 960 C1

Реферат патента 1995 года СПОСОБ ВЫПЛАВКИ СТАЛИ

Использование: в черной металлургии. Сущность изобретения: продувку жидкого металла проводят одновременно кислородом и порошкообразным углеродсодержащим материалом раздельными струями, соотношение массового расхода порошка в единицу времени к объемному расходу кислорода составляет 1,1 - 4,5 кг/м3 O2 3 табл.

Формула изобретения RU 2 031 960 C1

СПОСОБ ВЫПЛАВКИ СТАЛИ, включающий одновременную подачу в жидкий металл кислорода и порошкообразного углеродсодержащего материала отдельными струями, отличающийся тем, что, с целью повышения степени использования углеродсодержащего материала, увеличения стойкости огнеупоров, снижения расхода раскислителей и легирующих, отношение массового расхода порошкообразного углеродсодержащего материала в единицу времени к объемному расходу кислорода составляет 1,1 - 4,5 кг/м3 О2.

Документы, цитированные в отчете о поиске Патент 1995 года RU2031960C1

Способ выплавки стали 1980
  • Сельский В.И.
  • Глазов А.Н.
  • Толстогузов Н.В.
  • Чирихин В.Ф.
  • Николаев А.Л.
  • Привалов М.М.
SU908096A1
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 031 960 C1

Авторы

Руденков Э.Г.

Мороков В.П.

Чирихин В.Ф.

Агарышев А.И.

Кишкин Ю.Н.

Даты

1995-03-27Публикация

1991-01-03Подача