Изобретение относится к области охраны окружающей среды, конкретнее к области создания бессточных схем водоочистки за счет полного разделения растворов солей на сухой продукт (соли, соответствующие требованиям ГОСТ) и воду.
Наиболее близким к изобретению является способ выделения солей из растворов путем кристаллизации выпариванием солей при двух температурах, основанный на различии концентраций эвтонических точек при различных температурах и соответственно на переходе из области кристаллизации одной соли в область кристаллизации другой при изменении температуры обрабатываемого раствора.
Недостатком данного способа является сложность контролирования процесса из-за близости нахождения концентраций эвтонических точек при различных температурах, что обусловливает низкое качество получаемого продукта.
Техническим результатом изобретения является более полное и качественное выделение солей из растворов.
Повышенное качество разделения растворов на сухой продукт и воду достигается тем, что извлечение солей из растворов путем кристаллизации при выпаривании производят после разделения раствора нанофильтрацией на два потока с составами, лежащими на изотермическом сечении диаграммы фазовых равновесий рассматриваемой системы по разную сторону от луча кристаллизации эвтонического раствора, с последующим раздельным извлечением этих солей из полученных растворов кристаллизацией за счет выпаривания их до эвтонического состава и возвращением остаточных маточных растворов в цикл.
Отличительным признаком заявляемого способа является то, что раствор разделяют нанофильтрацией на два потока с составами, лежащими в концентрационном треугольнике по разную сторону от луча кристаллизации эвтонического раствора, с последующим раздельным извлечением этих солей из полученных расторов кристаллизацией за счет выпаривания их до эвтонического состава и возвращением остаточных маточных растворов в цикл.
На фиг. 1 изображена схема извлечения солей из раствора. Установка состоит из нанофильтрационного аппарата 1 и испарителей-кристаллизаторов 2 и 3.
Заявляемый способ осуществляется следующим образом: на ступени 1 происходит нанофильтрационное разделение раствора на два потока. При этом процесс нанофильтрации ведут в таких режимах, при которых раствор, состав которого соответствует на схематическом изотермическом сечении диаграммы фазовых равновесий системы Н2О-Соль1-Соль2, не образующей двойных солей (фиг. 2) точке А, разделяется на фильтрат и концентрат, составы которых соответствуют точкам В и С, лежащим по разные стороны луча, соединяющего точку Н2О с точкой Е, соответствующей раствору эвтонического состава. Полученные после нанофильтрационного разделения растворы выпариваются в испарителях 2 и 3 с получением двух солей. Изменение состава этих растворов, происходящее при выпаривании (отрезки ВК и СР) и кристаллизации (кривые КМ и РН), показаны на фиг. 2. Процесс кристаллизации прекращают не доходя до эвтонической точки Е, чтобы избежать загрязнения солей за счет их совместного выделения. Маточный раствор с 2 и 3 ступеней возвращают в цикл на ступень 1.
Если в системе, из которой требуется извлечь соли, существует более одной эвтонической точки (фиг.3), то процесс нанофильтрационного разделения проводят таким образом, чтобы из исходного раствора состава, соответствующего точке A' на фиг.3, получать концентрат и фильтрат составов, соответствующих точкам B' и C' на фиг.3, лежащим на изотермическом сечении диаграммы фазовых равновесий по разную сторону от лучей кристаллизации соответствующих эвтонических растворов.
П р и м е р 1. Исходный раствор хлорида и сульфата натрия с концентрацией NaCl 80 г/л, Na2SO4 25 г/л подают с расходом 1 м3/ч на нанофильтрационное разделение, где получают 0,77 м3/ч фильтрата, содержащего NaCl 80 г/л, Na2SO4 2,3 г/л, и 0,23 м3/ч концентрата, содержащего NaCl 80 г/л, Na2SO4 101 г/л. Далее фильтрат упаривают в 13 раз, получая 45,8 кг/ч хлорида натрия, при этом концентрация сульфата натрия в растворе достигает 30 г/л. Концентрат нанофильтрационного разделения упаривают в 2,75 раза с выделением 18,6 кг/ч сульфата натрия, при этом его содержание в растворе снизится до 55 г/л. Маточный раствор со ступени выпаривания фильтрата, содержащий 266 г/л NaCl и 30 г/л Na2SO4 c расходом 0,06 м3/ч возвращается в цикл на ступень нанофильтрационного разделения. Туда же возвращается и маточный раствор, полученный после выпаривания концентрата, с расходом 0,08 м3/ч и концентрацией 220 г/л NaCl и 55 г/л Na2SO4.
П р и м е р 2. Исходный раствор хлорида и сульфата натрия с концентрацией Na2SO4 120 г/л и NaCl 10 г/л и расходом 1 м3/ч выпаривают с кристаллизацией 117 кг сульфата натрия при 100оС до концентрации примерно NaCl 200 г/л, Na2SO4 от 63 г/л с расходом на выходе 0,05 м3/ч. Затем раствор разбавляют в 2,5 раза до объема 0,125 м3/ч и концентрации NaCl 80 г/л и Na2SO4 25,2 г/л, после чего подают на нанофильтрационное разделение, где получают 0,096 м3/ч фильтрата с концентрацией NaCl 80 г/л, Na2SO4 2,3 г/л и 0,029 м3/ч концентрата с концентрацией NaCl 80 г/л, Na2SO4 100 г/л. Далее фильтрат упаривают в 13 раз, получая 5,7 кг/ч хлорида натрия. При этом концентрация сульфата натрия в растворе достигает 30 г/л. Концентрат нанофильтрационного разделения упаривают в 2,75 раз с выделением 2,3 кг/ч сульфата натрия, причем содержание его в растворе уменьшается до 55 г/л. Маточный раствор со ступени выпаривания фильтрата, содержащий 266 г/л NaCl и 30 г/л Na2SO4, c расходом 0,007 м3/ч возвращается в цикл на ступень нанофильтрационного разделения. Туда же возвращается и маточный раствор, полученный после выпаривания концентрата с расходом 0,01 м3/ч и концентрацией 220 г/л NaCl и 55 г/л Na2SO4.
П р и м е р 3. Исходный раствор содержит 0,96 г/л SO42-, 1,51 г/л Cl-, 0,62 г/л Na+, 0,43 г/л Mg2+. Концентрации растворов на всех ступенях процесса представлены в таблице.
На фиг. 4-5 изображены изотермы растворимости системы Na+, Mg2+ Cl-, SO42- при 55оС (фиг.4) и при 100оС (фиг.5) с фазовыми областями: 1 Na2SO4; 2 9Na2SO4; MgSO4˙3NaCl; 3 NaCl; 4 3Na2SO4х хMgSO4; 5 MgCl2˙6H2O; 6 MgCl2˙H2O; 7 Na2SO4˙MgSO4˙2,5H2O; 8 Na2SO4 x x MgSO4˙4H2O; 9 MgSO4˙6H2O. Указанный исходный раствор с раcходом 1 м3/ч (точка А), из которого при простом выпаривании кристаллизуется двойная соль Na2SO4˙MgSO4 x x 4H2O, подают на нанофильтрационное разделение, где получают 0,8 м3/ч фильтрата (точка В на фиг. 4) и 0,2 м3/ч концентрата (точка С на фиг.5). Далее из фильтрата кристаллизуют при 39,5-кратном выпаривании при 55оС 1,1 кг/ч хлорида натрия (точка B' на фиг.4), а из концентрата при 3,8-кратном выпаривании при 100оС кристаллогидрат сульфата магния 0,5 кг/ч в пересчете на сульфат магния (точка C' на фиг. 5). Маточные растворы состава, близкого к эвтоническому, возвращаются в цикл.
Преимущество заявляемого способа заключается в том, что получаемые соли кристаллизуются в области, достаточно далекой от эвтонического состава, т.е. предлагаемый способ позволит получать более чистый продукт при полной переработке раствора.
Таким образом, благодаря новым отличительным признакам, заключающимся в нанофильтрационном разделении раствора на два потока с составами, лежащими в областях кристаллизации различных солей, и последующей раздельной кристаллизацией выпариванием этих солей из полученных растворов с возвращением маточных растворов в цикл, достигается указанный технический результат.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕРМОУМЯГЧЕНИЯ РАСТВОРА | 1995 |
|
RU2083501C1 |
СПОСОБ ОЧИСТКИ ВОДЫ | 1992 |
|
RU2086511C1 |
СЕКЦИЯ БАРОМЕМБРАННЫХ МОДУЛЕЙ | 1995 |
|
RU2079348C1 |
СПОСОБ ПЕРЕРАБОТКИ ХЛОРИДНО-СУЛЬФАТНЫХ СТОЧНЫХ ИЛИ ПРИРОДНЫХ ВОД | 1990 |
|
RU2060973C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА НАТРИЯ ИЗ ФОСФОГИПСА | 2017 |
|
RU2753536C2 |
Способ обработки воды | 1980 |
|
SU1068399A1 |
СПОСОБ ИЗУЧЕНИЯ РАСТВОРИМОСТИ В МНОГОКОМПОНЕНТНЫХ ВОДНО-СОЛЕВЫХ СИСТЕМАХ | 2010 |
|
RU2416790C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФАТА КАЛИЯ | 1998 |
|
RU2154026C2 |
КАВИТАЦИОННЫЙ РЕАКТОР | 1991 |
|
RU2016646C1 |
СПОСОБ ОПРЕДЕНИЯ СОСТАВОВ НОНВАРИАНТНЫХ РАВНОВЕСНЫХ ФАЗ МНОГОКОМПОНЕНТНЫХ ВОДНО-СОЛЕВЫХ СИСТЕМ | 2010 |
|
RU2421721C1 |
Использование: очистка растворов кристаллизацией. Сущность изобретения: извлечение солей из растворов путем кристаллизации при выпаривании производят после разделения раствора нанофильтрацией на два потока с составами, лежащими на изотермическом сечении диаграммы фазовых равновесий обрабатываемой системы по разную сторону от луча кристаллизации раствора эвтонического состава. Полученные после кристаллизации солей маточные растворы возврашаются в цикл. Техническим результатом изобретения является более полное и качественное выделение солей из растворов. 1 з.п. ф-лы, 5 ил., 1 табл.
Способ обработки продувочных вод парогенераторов | 1978 |
|
SU859310A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Авторы
Даты
1995-04-20—Публикация
1991-12-30—Подача