Изобретение относится к ядерной технике и может быть использовано для поглощения и захоронения радиоактивных инертных газов, образующихся в тепловыделяющих элементах и термоэмиссионных электрогенерирующих каналах, а также в других устройствах, связанных с радиоактивными процессами.
Известен электроразрядный вакуумный насос, состоящий из магнитопрозрачного корпуса с патрубком и расположенных в корпусе параллельно друг другу катода и анода [1] При этом анод выполнен с развитой ячеистой поверхностью. Снаружи корпуса расположена магнитная система. В этом насосе поглощение радиоактивных инертных газов осуществляется путем их ионизации и последующей сорбции на аноде и частично на катоде. Достигается это за счет распыления материала катода и захоронения (связывания) с помощью распыленного материала инертных газов на аноде.
Недостатками этого насоса являются нестабильность работы из-за сорбции газов на аноде, а также низкая производительность.
Кроме того, наличие массивной магнитной системы увеличивает металлоемкость насоса, а близко расположенные катод и анод создают возможность для короткого замыкания. При этом возможности короткого замыкания способствует высокое напряжение на аноде ( ≈ 6000 В).
Наиболее близким по технической сущности к предлагаемому изобретению является электроразрядный насос [2] состоящий из герметичного корпуса с помещенным в него катодом в виде параллельных пластин, на которых выполнены перпендикулярные к ним ребра. Между катодными пластинами помещен кольцевой анод. Ребра на катодных пластинах в сочетании с кольцевым анодом образуют систему полых катодов, работающих в импульсном режиме.
Основным недостатком прототипа является низкая производительность откачки инертных газов из-за импульсного режима работы и отсутствия охлаждения катода. При повышении температуры катодов выше пороговой происходит десорбция уже поглощенных ионов инертных газов и процесс откачки прекращается.
Кроме того, конструкция насоса является сложной из-за выполнения катодов в виде пластин с перпендикулярными ребрами и помещения между ними кольцевого анода, имеющего сложную конструкцию изоляции, которая не исключает возможности короткого замыкания между катодом и анодом. При этом расположение анода между пластинами катодов снижает эффект использования энергии вторичных электронов, необходимых для ионизации инертных газов, так как в такой конструкции путь вторичного электрона от катода к аноду минимален и на его коротком пути количество соударений и образование ионов инертных газов снижается. Процесс захоронения инертных газов, т. е. откачки, без их ионизации не происходит.
Целью изобретения является увеличение производительности и стабильности работы насоса путем увеличения эффективности использования вторичных электронов и обеспечение непрерывности режима работы насоса.
Для этого отрицательно заряженный электрод установлен с зазором параллельно боковой поверхности корпуса, снабженного входным патрубком и выполненного металлическим с возможностью охлаждения, при этом корпус соединен с источником отрицательного заряда, а положительно заряженный электрод анод расположен заподлицо с внутренней поверхностью корпуса насоса.
С целью повышения экономичности насоса путем увеличения поверхности отрицательно заряженного электрода (катода) последний выполнен в виде перфорированной поверхности.
Поскольку данное устройство имеет отличные от прототипа признаки, которые обеспечивают достижение положительного эффекта, предлагаемое изобретение соответствует критериям охраноспособности "новизна" и "положительный эффект".
Среди известных технических решений не обнаружено решений, включающих признаки, образующие совокупность признаков отличительной части формулы, поэтому предлагаемое решение обладает и "существенными отличиями".
На чертеже изображен электроразрядный вакуумный насос.
Электроразрядный вакуумный насос представляет собой токопроводный корпус 1 в виде цилиндрической емкости с входным патрубком 2 для впуска радиоактивного газа 3. Корпус емкости соединен с источником 4 отрицательного заряда или заземлен. Стенки емкости снабжены системой 5 охлаждения. Внутри корпуса 1 насоса заподлицо с внутренней поверхностью стенки закреплен на изоляторе 6 положительно заряженный электрод-анод 7, соединенный с источником 8 положительного заряда. Параллельно внутренней цилиндрической поверхности корпуса 1 с зазором относительно стенки установлен с помощью изоляторов 9 один или несколько электродов-катодов 10, соединенных с источником 11 отрицательного заряда и образующих с анодом 7 систему полого катода. Катод 10 выполнен из высокоактивного металла, легко поддающегося распылению, такого как титан, цирконий, молибден и др.
В зависимости от требующейся производительности и экономичности насоса катод может быть выполнен в виде одного или нескольких стержней, сплошных или перфорированных полос, обечайки и т. д.
Для обеспечения максимальной производительности насоса катод выполняют в виде перфорированной обечайки. Этим достигается максимальная распыляемая поверхность катода, а перфорация по всей площади обечайки обеспечивает пролет распыленного материала катода через отверстия перфорации и его захоронение на охлаждаемой стенке корпуса насоса.
Вакуум-плотный корпус насоса выполнен из конструкционной нержавеющей стали типа марки 12Х18Н10Т.
Электроразрядный вакуумный насос работает следующим образом.
Первоначально при запуске в корпусе 1 насоса создают разрежение 5˙10-6 мм рт. ст. с помощью известных средств. Потом через патрубок 2 с помощью автоматического клапана, срабатывающего от определенного разрежения, в корпус насоса запускается порция радиоактивного инертного газа до создания в корпусе разрежения 1˙10-1 мм рт. ст. после чего подача газа прекращается. При подаче на анод напряжения +600 В, а на катод (-50) В между анодом и катодом возникает тлеющий разряд с полым катодом.
Образующиеся в зоне полого катода вторичные электроны, соударяясь с атомами инертного газа, его ионизируют, и уже ионы этого газа, соударяясь с поверхностью катода, вызывают испарение материала катода. Испаренный материал катода осаждается на охлаждаемой стенке корпуса 1, при этом происходит захоронение ионов радиоактивного газа. При интенсивной бомбардировке катода 10 ионами газа 3 катоды разогреваются, что ускоряет процесс распыления, а следовательно, и процесс откачки. Корпус насоса подключен к источнику 4 отрицательного заряда, например к нулевому проводу электросети, что в сочетании с охлаждением обеспечивает прочное удержание напыленного слоя со связанным в нем радиоактивным газом. Отсутствие охлаждения на катоде и его более отрицательный потенциал по отношению к корпусу насоса обеспечивает устойчивое распыление материала катода. Процесс поглощения газа идет до разрежения 1˙10-3 мм рт. ст. т. е. до тех пор, пока в насосе имеются условия для горения разряда с полым катодом. Прекращение тока между анодом и катодом автоматически включает напускной клапан для впуска новой порции радиоактивного инертного газа до давления 1˙10-1 мм рт. ст. после чего клапан перекрывается. Практически при четкой работе автоматики процесс откачки газа и его захоронение на охлаждаемой стенке насоса идут непрерывно.
Расположение анода 7 заподлицо с внутренней поверхностью корпуса насоса позволяет полностью использовать объем корпуса для образования полого катода и тем самым увеличить производительность при сохранении габаритов и объема захоронения. Расположение анода за пределами внутреннего объема корпуса насоса затрудняет поджиг разряда и увеличивает электрические потери. Конструктивное разделение катодов на неохлаждаемую распыляемую часть, выполняемую из высокоактивных и легкораспыляемых материалов (Ti, Mo, Zr), и охлаждаемую часть, служащую для захоронения газов, позволяет максимально повысить производительность насоса и емкость захоронения, а также обеспечить непрерывность работы насоса до полного распыления неохлаждаемого катода. При этом охлаждаемая часть катода в виде внутренней поверхности корпуса насоса может многократно использоваться для дальнейшей работы при замене распыленных неохлаждаемых катодов до тех пор, пока толщина напыленного слоя на поверхности охлаждаемого катода не достигнет величины зазора между неохлаждаемым катодом и стенкой корпуса насоса (охлаждаемого катода). Это позволяет захоронить в одном корпусе насоса максимально возможное, зависящее только от исходных габаритов корпуса насоса количество радиоактивных инертных газов, что экономически дает большие преимущества перед известными конструкциями, так как происходит экономия средств на транспортировку и длительное захоронение радиоактивных отходов.
название | год | авторы | номер документа |
---|---|---|---|
ЭЛЕКТРОРАЗРЯДНЫЙ ВАКУУМНЫЙ НАСОС | 1990 |
|
RU2034360C1 |
МАГНИТНЫЙ ЭЛЕКТРОРАЗРЯДНЫЙ МИКРОНАСОС | 2002 |
|
RU2239933C2 |
МАГНИТНЫЙ ЭЛЕКТРОРАЗРЯДНЫЙ НАСОС | 1971 |
|
SU310319A1 |
Устройство для плазменной дезактивации элементов конструкции ядерного реактора | 2021 |
|
RU2771172C1 |
СПОСОБ ПИРОХИМИЧЕСКОЙ РЕГЕНЕРАЦИИ ЯДЕРНОГО ТОПЛИВА | 1994 |
|
RU2079909C1 |
ПЕРВАЯ СТЕНКА ТЕРМОЯДЕРНОГО РЕАКТОРА | 1994 |
|
RU2065626C1 |
ПЛАЗМЕННЫЙ ИСТОЧНИК ОТРИЦАТЕЛЬНЫХ АТОМАРНЫХ ИОНОВ | 1994 |
|
RU2076384C1 |
СПОСОБ ДЕЗАКТИВАЦИИ ЭЛЕМЕНТА КОНСТРУКЦИИ ЯДЕРНОГО РЕАКТОРА | 2018 |
|
RU2711292C1 |
Магнитный электроразрядный насос | 1978 |
|
SU750612A1 |
ФИЛЬТР ДЛЯ ОЧИСТКИ ВОДЫ ОТ МЕХАНИЧЕСКИХ ЗАГРЯЗНЕНИЙ В ТРУБОПРОВОДАХ РАЗДАЮЩИХ КОЛЛЕКТОРОВ | 1996 |
|
RU2104746C1 |
Использование: в вакуумной технике, в частности в электрозарядных вакуумных насосах, применяемых преимущественно в ядерной технике для поглощения радиоактивных инертных газов, образующихся в результате распада радиоактивных веществ. Сущность изобретения: отрицательно заряженный электрод размещен параллельно боковой стенке корпуса насоса, выполненного охлаждаемым и металлическим, а положительно заряженный электрод расположен заподлицо с поверхностью корпуса. Отрицательно заряженный электрод может быть выполнен перфорированным. Входной патрубок обеспечивает непрерывную откачку объемов. 2 з.п. ф-лы, 1 ил.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Электроразрядный насос | 1976 |
|
SU594548A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1995-04-30—Публикация
1990-05-03—Подача