Изобретение относится к технологии неорганических веществ, в частности к способам получения бифторида аммония, который может быть использован в качестве фторирующего агента в технологии фторидов азота, в течение травления стекол, в технологии бериллия и др.
Известен способ бифторида аммония выпариванием раствора фторида аммония при температурах до 150оС и сохранением в плаве 5-30 мас. воды до тех пор, пока содержание NH4HF2 в плаве будет не менее 90% после чего смесь фторидов аммония делают почти безводной [1] Полученный продукт содержит 91-97% NH4HF2, 3-8% NH4F и 0,3-0,4% Н2О.
Недостатками способа являются высокая коррозионная активность плава при высоких температурах, инкрустация оборудования и низкое содержание основного вещества.
Известен способ, в котором бифторид аммония получают термическим разложением фторида аммония, содержащего 3-36 (5-20) мас. Н2О, при температурах от 100 до 200оС [2]
Недостатками способа являются высокая коррозионность среды при высоких температурах, сильная инкрустация оборудования, так как процесс идет в расплаве. Кроме того, процесс опасен из-за возможности создания взрывоопасных смесей аммиака с воздухом.
Известен способ получения бифторида аммония взаимодействием газообразных фтористого водорода и аммиака, взятых в соотношении (1,9-2,1):1 с последующей конденсацией паров в среде расплавленного бифторида аммония [3] Температуру в зоне реакции поддерживают 170-220оС, а в зоне конденсации 145-155оС. Получают продукт с содержанием основного вещества 99,3-99,7%
Недостатками способа являются сложность аппаратурного оформления, высокая коррозионная активность среды и инкрустация оборудования расплавом бифторида аммония.
Наиболее близким к изобретению по технической сущности является способ [4] в соответствии с которым бифторид аммония получают обработкой фторида аммония безводным фтористым водородом.
Недостатками способа являются оплавление реакционной массы и инкрустация оборудования, так как взаимодействие реагентов сопровождается выделением большого количества тепла и образованием эвтектического расплава.
Задачей изобретения является исключение инкрустации оборудования и получение сыпучего продукта с размером частиц 0,1-1,0 мм.
Для этого фторид аммония обрабатывают безводным фтористым водородом, скорость подачи которого поддерживают равной 0,10-0,35 т/ч на 1 т фторида аммония.
Сущность предлагаемого способа заключается в следующем.
Фторид аммония загружают в реактор и при перемешивании осуществляют подачу безводного фтористого водорода, регулируя скорость подачи в пределах 0,10-0,35 т/ч на 1 т фторида аммония. Общий расход фтористого водорода составляет 100-104% от стехиометрии.
При скорости подачи безводного фтористого водорода мене 0,10 т/ч на 1 т NH4F увеличивается продолжительность процесса и уменьшается производительность реактора.
При скорости подачи фтористого водорода более 0,35 т/ч на 1 т NH4F происходит спекание и оплавление массы, наблюдается резкое снижение однородности продукта и инкрустации оборудования оплавленным продуктом.
Отличительным признаком способа является скорость смешения безводного фтористого водорода и фторида аммония, составляющая 0,10-0,35 т/ч на 1 т фторида аммония.
П р и м е р. В реактор загружают 125 кг фторида аммония. Размер зерна порошка менее 0,1 мм. Включают перемешивающее устройство. Жидкий фтористый водород подают из контейнера, установленного на весах, по сифону с помощью сжатого воздуха. Скорость подачи фтористого водорода устанавливают 20 кг/ч, что соответствует 0,16 т/ч на 1 т NH4F. Фтористый водород перед подачей в реактор захолаживают в теплообменнике с помощью рассола с температурой минус 15оС. Через 3,5 ч из реактора выгружают 190 кг бифторида аммония, содержащего 99,5% NH4HF2 и 0,3% NH4F. Выход продукта составил 98% Общий расход фтористого водорода от стехиометрии 104% Размер зерна полученного порошка 0,1-0,35 мм (90% всей массы).
Аналогичным образом приведены опыты 2-5. Условия и результаты опытов приведены в таблице.
Предлагаемый способ позволяет получать продукт с высоким выходом (97-98% ) и высоким содержанием основного вещества (98,5-99,5%).
На основе предлагаемого технического решения может быть создана производительная технология как в периодическом, так и в непрерывном режиме. Предлагаемое решение исключает спекание массы и инкрустацию оборудования, процесс идет при низких температурах, исключающих оплавление массы, при этом сокращаются затраты энергии и уменьшается коррозионность среды. Предлагаемое решение позволяет получать сыпучий продукт с размером зерна 0,1-1,0 мм.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения трифторида калия | 1991 |
|
SU1799357A3 |
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДА КАЛЬЦИЯ | 1991 |
|
RU2010003C1 |
СПОСОБ ПОЛУЧЕНИЯ 1,2-ДИБРОМ-1,1,2-ТРИФТОРЭТАНА ИЛИ 1,2-ДИБРОМ-1,1-ДИФТОРЭТАНА | 1990 |
|
RU1744933C |
Способ получения бифторид-фторида аммония | 1988 |
|
SU1650580A1 |
Поглотитель фторсодержащих газов | 1991 |
|
SU1809779A3 |
ПОГЛОТИТЕЛЬ ГАЗОВ | 1991 |
|
RU2008085C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЕРФТОРИРОВАННЫХ МЕТИЛПРОИЗВОДНЫХ БЕНЗОЛА | 1993 |
|
RU2074850C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО СТЕКЛА | 1991 |
|
RU2022925C1 |
СПОСОБ ПОЛУЧЕНИЯ ТРИФТОРИДА АЗОТА | 2001 |
|
RU2184698C1 |
Способ получения бифторида аммония | 1986 |
|
SU1407905A1 |
Изобретение относится к технологии неорганических веществ, в частности к способам получения бифторида аммония. Фторид аммония обрабатывают безводным фтористым водородом. Скорость подачи НФ 0,1 - 0,35 т/ч на 1т фторида аммония. Получают целевой продукт размером частиц 0,1 - 1,0 мм, выход 97,7 - 98,5% . Исключена инкрустация оборудования, продукт получается сыпучим. 1 табл.
СПОСОБ ПОЛУЧЕНИЯ БИФТОРИДА АММОНИЯ, включающий взаимодействие безводного фтористого водорода и фторида аммония, отличающийся тем, что фтористый водород подают со скоростью 0,10 0,35 т/ч на 1 т фторида аммония.
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Итоги науки и техники | |||
Серия "Неорганическая химия", т.15, "Фториды аммония" | |||
М., 1988, с.53, 31. |
Авторы
Даты
1995-06-27—Публикация
1992-12-02—Подача