СПОСОБ ОЧИСТКИ ВОЗВРАТНЫХ УГЛЕВОДОРОДОВ В ПРОИЗВОДСТВЕ ПОЛИСТИРОЛА И ЕГО СОПОЛИМЕРОВ Российский патент 1995 года по МПК C08F6/10 

Описание патента на изобретение RU2039759C1

Изобретение относится к химической промышленности и может быть использовано в производстве полистирола и его сополимеров при неполной конверсии мономеров.

Наиболее близким по технической сущности и достигаемому результату к изобретению является способ очистки стирола и инертного растворителя (этилбензола) в производстве полистирола, согласно которому очищаемые стирол и этилбензол после самоиспарения из реакционной массы при снижении давления направляют в скруббер, где их охлаждают собственным конденсатором, при этом тяжелокипящие примеси абсорбируются и выводятся из нижней части скруббера на сжигание. Балансовый избыток конденсата (очищенные этилбензол и стирол) возвращают на полимеризацию. При соблюдении предельно допустимой концентрации тяжелокипящих примесей в очищенных углеводородах, равной 0,01 мас. их потери составляют 5-7% от подаваемых на очистку.

Целью изобретения является снижение потерь при очистке возвратных углеводородов (мономеров и растворителя).

Указанную цель достигают способом очистки возвратных углеводородов, согласно которому их испаряют из реакционной массы при снижении давления, охлаждают полученный пар в скруббере собственным конденсатом при одновременной абсорбции им тяжелокипящих углеводородов.

Новым в способе является последующая ректификация фракции, отводимой из нижней части скруббера, совместно с углеводородами со второй ступени испарения, деструкция кубового остатка ректификации и разделение продуктов деструкции в аппарате однократного испарения с возвращением легколетучей фракции на ректификацию.

Вакуумирование углеводородов из расплава полимеров проводят при 230-260оС и остаточном давлении 20-40 мм рт.ст. (I-я ступень) и 2-5 мм рт.ст. (2-я ступень). Количество углеводородов, отводимых со второй ступени вакуумирования, составляет 2-7 мас. от общего количества непрореагированных мономеров и растворителя при значительно более высокой концентрации тяжелокипящих примесей в меньшем технологическом потоке. Скруббер работает в режиме, обеспечивающем содержание тяжелокипящих примесей в отводимых парах ниже допустимого предела, при этом состав тяжелокипящей фракции, отводимой из нижней части скруббера, может колебаться в значительных пределах. В аналогичном "мягком" режиме работ ректификационная колонна, основное назначение которой обеспечить необходимую чистоту ее дистиллята (возвратные мономеры и растворитель).

Термическую деструкцию кубового остатка ректификации проводят при 400-500оС в присутствии водяного пара при соотношении кубовый остаток водяной пар 1: 0,5-5. Тяжелокипящие примеси кубового остатка ректификации включают около 20 мас. полимерных продуктов, которые деструктируют полностью, причем 60% их превращаются в мономеры (остальными продуктами деструкции являются олигомеры). При использовании медного катализатора выход мономеров повышается до 80% Аппарат однократного испарения работает в "жестком режиме" и его основное назначение обеспечить максимальное полное удаление мономеров и растворителя из тяжелокипящего остатка при широком колебании состава рециркулируемой в ректификационную колонну фракции.

На чертеже приведена принципиальная схема способа очистки возвратных углеводородов.

Углеводороды из вакуумного испарителя 1 по паровому трубопроводу 2 направляют в скруббер 3, на орошение которого подают конденсат очищенных мономеров и растворителя по линии 4. Отводимые из скруббера 3 по трубопроводу 5 пары после узла конденсации 6 собирают в емкости 7, из которой часть очищенных углеводородов по линии 8 возвращают на полимеризацию, а часть используют для орошения скруббера. Соотношение этих технологических потоков выбирается таким, чтобы обеспечить охлаждение паров углеводородов до температуры, близкой к равновесной. С нижней части скруббера 3 по трубопроводу 9 тяжелокипящую фракцию направляют в ректификационную колонну 10.

Из вакуумного испарителя 11 по трубопроводу 12 пары неочищенных углеводородов подают на узел конденсации 13 и далее в ректификационную колонну 10. Отводимые из колонны пары конденсируют в дефлегматоре 14 и после емкости 15 часть углеводородов возвращают на орошение колонны, а часть по линии 16 рециркулируют на полимеризацию. Кубовый остаток колонны по трубопроводу 17 отводят в реактор 18 деструкции, из которого по линии 19 вводят в аппарат однократного испарения 20. Легколетучую фракцию из аппарата однократного испарения по трубопроводу 21 через конденсатор 22 возвращают в колонну 10. Тяжелокипящие углеводороды по линии 23 выводят из технологической схемы.

П р и м е р 1. Углеводороды в производстве полистирола очищают согласно предлагаемому способу. Расходы основных технологических потоков и их составов приведены в таблице. На очистку поступает 910 + 65 975 кг/ч стирола. На полимеризацию рециркулируют из скруббера 843,10 кг/ч и ректификационной колонны 128,15 кг/ч стирола. Потери стирола при очистке составляет
0,38
П р и м е р 2. Углеводороды в производстве акрилнитрилбутадиенстирольного сополимера (АБС) очищают согласно предлагаемому способу. Расходы основных технологических потоков и их составов приведены в таблице.

П р и м е р 3. Углеводороды в производстве стиролакрилнитрильного сополимера (САН) очищают согласно предлагаемому способу. Расходы основных технологических потоков и их составов приведены в таблице.

Номера технологических потоков в таблице соответствуют их позициям в описании технологической схемы.

При самоиспарении углеводородов из полимеризата в одну стадию с целью предотвращения увеличения в них тяжелого остатка и, следовательно, смягчения условий самоиспарения, потери стирола с полимеризатом возрастают на 15 кг и составляют
·100% 1,54
При очистке возвратных углеводородов без ректификации возникает необходимость в более жесткой работе скруббера с целью снижения содержания в кубовом остатке скруббера углеводородов. При этом неизбежно возрастает содержание тяжелого остатка в углеводородах из верхней части скруббера. При концентрации тяжелого остатка в углеводородах, отводимых на полимеризацию в пределах 0,01-0,015% потери стирола с кубовым остатком скруббера составят 20 кг или
·100 2,05
Включение в схему очистки углеводородов ректификации особенно целесообразно при испарении углеводородов из полимеризата в две стадии, так как попадание в скруббер относительно большого количества тяжелого остатка не так важно, поскольку скруббер работает в мягком режиме и доочистка углеводородов производится в ректификационной колонне.

Включение в схему процесса деструкции кубового остатка ректификации позволяет дополнительно получить 83,47-81,152,32 кг/ч стирола, что составит
· 100 0,24%
Снижение потерь стирола происходит за счет комбинации стадии ректификации с второй ступенью испарения углеводородов из полимеризата и включение в схему процесса деструкции.

Предусмотрена к установке ректификационная колонна с числом теоретических тарелок 15 (около 30 практических). Флегмовое число колонны 0,8-1,2, давление в верхней части 50 мм рт.ст. температура в верхней части 45-50оС, в кубовой части 85-93оС.

Похожие патенты RU2039759C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ДИЕН-СТИРОЛЬНЫХ СОПОЛИМЕРОВ 1991
  • Ривин Э.М.
  • Скульский А.С.
  • Молодыка А.В.
  • Нефедов Е.С.
  • Паученко Е.В.
  • Чечулина О.П.
  • Рыльков А.А.
  • Рачинский А.В.
RU2039761C1
СПОСОБ РЕГЕНЕРАЦИИ УГЛЕВОДОРОДНОГО РАСТВОРИТЕЛЯ ИЗ ВОЗВРАТНОГО РАСТВОРИТЕЛЯ В ПРОИЗВОДСТВЕ СИНТЕТИЧЕСКОГО КАУЧУКА 1991
  • Молодыка А.В.
  • Ковтуненко А.В.
  • Ившин П.М.
  • Шубин Ю.А.
  • Марушак Г.М.
  • Кузьменко В.В.
RU2039756C1
Способ очистки от примесей незаполимеризовавшегося стирола в производстве полистирола 1984
  • Волков Рудольф Николаевич
  • Кац Михаил Павлович
  • Каленов Евгений Александрович
  • Титова Эвелина Ивановна
  • Игнатова Галина Николаевна
  • Коблянский Вадим Анатольевич
  • Звягин Евгений Герасимович
  • Скорняков Юрий Николаевич
SU1320204A1
СПОСОБ ПОЛУЧЕНИЯ БУТАДИЕН-СТИРОЛЬНЫХ КАУЧУКОВ 1994
  • Нефедов Е.С.
  • Марушак Г.М.
  • Зверева Н.А.
  • Кузьменко В.В.
RU2071483C1
СПОСОБ ПОЛУЧЕНИЯ (СО)ПОЛИМЕРОВ СОПРЯЖЕННЫХ ДИЕНОВ 1992
  • Глуховской В.С.
  • Литвин Ю.А.
  • Ковтуненко Л.В.
  • Кулакова К.А.
  • Арест-Якубович А.А.
  • Басова Р.В.
  • Золотарев В.Л.
  • Золотарева И.В.
  • Моисеев В.В.
  • Кристальный Э.В.
  • Глазунова Е.В.
  • Молодыка А.В.
RU2076113C1
СПОСОБ ВЫДЕЛЕНИЯ СТИРОЛА 1991
  • Смирнов В.С.
  • Комаров В.А.
  • Мельников Г.Н.
  • Васильев И.М.
  • Галиев Р.Г.
  • Белокуров В.А.
  • Петухов А.А.
  • Серебряков Б.Р.
RU2043325C1
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ ДИЕНОВ (ВАРИАНТЫ) 1996
  • Коноваленко Н.А.
  • Харитонов А.Г.
  • Проскурина Н.П.
  • Кудрявцев Л.Д.
  • Молодыка А.В.
  • Привалов В.А.
  • Рачинский А.В.
  • Марков И.Р.
RU2124529C1
КЛЕЙ-РАСПЛАВ 1994
  • Кондратьев А.Н.
  • Рогова Т.М.
  • Юдин В.П.
  • Марченко В.А.
  • Мисько Т.В.
RU2100397C1
СПОСОБ ВЫДЕЛЕНИЯ СТИРОЛА ИЗ ПРОДУКТОВ ДЕГИДРАТАЦИИ МЕТИЛФЕНИЛКАРБИНОЛА 1997
  • Сахапов Г.З.
  • Серебряков Б.Р.
  • Белокуров В.А.
  • Зуев В.П.
  • Васильев И.М.
  • Ворожейкин А.П.
  • Борейко Н.П.
RU2118633C1
СПОСОБ СТАБИЛИЗАЦИИ ТЕРМОЭЛАСТОПЛАСТОВ 1996
  • Моисеев В.В.
  • Полуэктов И.Т.
  • Гуляева Н.А.
  • Филь В.Г.
  • Кудрявцев Л.Д.
  • Молодыка А.В.
  • Привалов В.А.
  • Глуховской В.С.
  • Рогова Т.М.
RU2114132C1

Иллюстрации к изобретению RU 2 039 759 C1

Реферат патента 1995 года СПОСОБ ОЧИСТКИ ВОЗВРАТНЫХ УГЛЕВОДОРОДОВ В ПРОИЗВОДСТВЕ ПОЛИСТИРОЛА И ЕГО СОПОЛИМЕРОВ

Использование: в химической промышленности в производстве полистирола и его сополимеров при неполной конверсии мономеров. Сущность изобретения: очистка возвратных углеводородов, включающая их самоиспарение из реакционной массы при снижении давления, охлаждение в скрубере конденсатом углеводородов и их отделение от тяжелокипящих углеводородов, где с целью потерь углеводороды из нижней части скруббера совместно с неочищенными углеводородами из второй ступени испарения ректификуют, кубовый остаток ректификации деструктируют и разделяют в аппрате однократного испарения, причем легколетучую фракцию рециркулируют на ректификацию. 1 ил. 1 табл.

Формула изобретения RU 2 039 759 C1

СПОСОБ ОЧИСТКИ ВОЗВРАТНЫХ УГЛЕВОДОРОДОВ В ПРОИЗВОДСТВЕ ПОЛИСТИРОЛА И ЕГО СОПОЛИМЕРОВ путем самоиспарения углеводородов в вакуумном испарителе при остаточном давлении 20 40 мм рт. ст. и температуре 230 260oС, охлаждения и частичной конденсации углеводородов в скруббере при давлении 10 - 40 мм рт. ст. и температуре 60 90oС с отделением и рециркуляцией на полимеризацию легколетучих углеводородов и удалением тяжелокипящей фракции, отличающийся тем, что, с целью снижения потерь, 93 95% от поступающих на очистку углеводородов направляют в скруббер, 5 7% углеводородов самоиспаряют в другом вакуумном испарителе при давлении 2 5 мм рт. ст. и температуре 240 280oС, углеводороды после второго испарителя и скруббера подвергают ректификации с последующей рециркуляцией легколетучих углеводородов на полимеризацию, а кубовый остаток ректификации деструктируют.

Документы, цитированные в отчете о поиске Патент 1995 года RU2039759C1

Технологический регламент производства ударопрочного полистирола и полистирола общего назначения
Устройство для видения на расстоянии 1915
  • Горин Е.Е.
SU1982A1
ВФ ВНИИЦК, Воронеж.

RU 2 039 759 C1

Авторы

Волков Р.Н.

Каленов Е.А.

Смирнов В.С.

Даты

1995-07-20Публикация

1990-03-19Подача