СПОСОБ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ НЕГЕРМЕТИЧНОСТИ Российский патент 1995 года по МПК G01M3/02 

Описание патента на изобретение RU2039960C1

Изобретение относится к испытательной технике, в частности к контролю герметичности криогенных трубопроводов космических аппаратов, и может быть использовано для контроля герметичности длинномерных изделий, имеющих многослойную конструкцию.

Известен способ определения локальной негерметичности, основанный на том, что вырезают участок оболочки, заполняют криогенный трубопровод, заключенный в оболочку, контрольным газом, продувают оболочку балластным газом, размещают щуп газоанализатора через вырезанный участок оболочки в полость между трубопроводом и оболочкой и перемещают его вдоль стенок оболочки до появления или исчезновения сигнала газоанализатора о наличии контрольного газа [1]
Недостатком известного способа является то, что для его осуществления требуется вскрытие участка оболочки для введения щупа газоанализатора в полость между трубопроводом и оболочкой с последующим восстановлением последней, т.е. проведение определенных ремонтно-восстановительных работ с оболочкой, что усложняет определение локальной негерметичности. Кроме того, известный способ позволяет судить только о наличии локальной негерметичности без определения ее величины.

Наиболее близким по технической сущности к изобретению является способ определения негерметичности криогенного трубопровода в оболочке, заключающийся в том, что продувают полость между трубопроводом и оболочкой балластным газом с постоянным расходом, подают в указанную полость в начале контролируемого участка тарированный поток контрольного газа величиной Qкт, регистрируют интервал времени от момента начала подачи до момента начала регистрации контрольного газа газоанализатором в этой полости в конце контролируемого участка, а также величину установившегося приращения сигнала газоанализатора, прекращают подачу тарированного потока, заполняют трубопровод контрольным газом до рабочего давления, регистрируют интервал времени от момента начала заполнения до момента начала регистрации контрольного газа газоанализатором в той же полости в конце контролируемого участка, а также величину установившегося приращения сигнала газоанализатора, координату места негерметичности определяют по соотношению измеренных интервалов времени, а ее величину по соотношению измеренных установившихся приращений сигнала газоанализатора [2]
Недостатками прототипа являются невозможность определения множественных негерметичностей (т.е. нескольких утечек по длине трубопровода) из-за практически одновременной доставки контрольного газа, вытекающего из этих негерметичностей, в конец контролируемого участка (и, следовательно, практически одновременной регистрации контрольного газа газоанализатором), а также несоответствие условий определения эксплуатационным условиям вследствие различия кинематических состояний среды, заполняющей трубопровод (при определении среда находится в статическом, при эксплуатации в динамическом состояниях).

Техническим результатом изобретения является обеспечение определения множественных негерметичностей с одновременным приближением условий определения к эксплуатационным.

Это достигается тем, что в известном способе определения локальной негерметичности криогенного трубопровода в оболочке, включающем продувку полости между трубопроводом и оболочкой балластным газом с расходом G1, подачу в указанную полость в начале контролируемого участка тарированного потока контрольного газа величиной Qкт c последующей регистрацией интервала времениТ от момента начала подачи до момента начала регистрации контрольного газа газоанализатором в этой полости в конце контролируемого участка, а также величины установившегося приращения сигнала газоанализатораAкт, прекращение подачи тарированного потока, продувают трубопровод балластным газом при рабочем давлении Р, которому соответствует расход G2, причем G2<G1, прекращают продувку трубопровода балластным газом. Одновременно с прекращением продувки трубопровода балластным газом с расходом G2 подают в него контрольный газ с расходом G3, причем G2<G3<G1, по прошествии времениt прекращают подачу контрольного газа в трубопровод. Одновременно с прекращением подачи контрольного газа в трубопровод с расходом G3 подают в него балластный газ с расходом G4, причем G3<G4<G1, фиксируют времена Тi(1) начала возрастания сигнала газоанализатора (сигнал от переднего фронта контрольного газа), интервалы времениθi(1) возрастания сигнала газоанализатора от фонового до установившегося (максимального) значения и величину установившегося приращения сигнала газоанализатораAi, а также времена Ti (2) начала убывания сигнала газоанализатора (сигнал от заднего фронта контролируемого газа) и интервалы времени θi(2) убывания сигнала газоанализатора от установившегося (максимального) до фонового значения. Координату места негерметичности Li и ее величину Qi определяют по формулам
Li 0,5 ˙ Lтр ˙ (gi(1) ˙ Тi(1)/Т +
+gi(2) ˙ Тi(2)/Т), (1)
Qi Qкт ˙Ai/^Акт, (2) где Lтр длина контролируемого участка трубопровода;
gi(1) и gi(2) коэффициенты значимости сигналов газоанализатора от переднего и заднего фронтов контрольного газа соответственно, определяемые из соотношений
gi(1) + gi(2) 1,
gi(1)/gi(2)θi(1)/^θi(2).

Способ определения локальной негерметичности криогенного трубопровода в оболочке осуществляется следующим образом (см.чертеж).

Продувают полость 1 между криогенным трубопроводом 2 полной длиной Lтр и оболочкой 3 балластным газом с расходом G1. Подают в полость в начале трубопровода 2 тарированный поток контрольного газа величиной Qкт через контрольную течь 4. Регистрируют интервал времениТ от момента начала подачи до момента начала регистрации контрольного газа газоанализатором 5 в полости в конце трубопровода 2, а также величину установившегося приращения сигнала газоанализатора 5Акт. Прекращают подачу тарированного потокa, продувают трубопровод 2 балластным газом при рабочем давлении Р, которому соответствует расход
G2=S (3) где S площадь сечения трубопровода;
ρ плотность газа, причем G2<G1.

Прекращают продувку трубопровода 2 балластным газом,
Одновременно подают в него контрольный газ с расходом G3, причем G2<G3< <G1.

По прошествии времениt, определяемого из соотношения,
t S ˙ Lмин/G3, (4) где Lмин минимальное расстояние между предлагаемыми негерметичностями, прекращают подачу контрольного газа в трубопровод 2.

Одновременно с прекращением подачи контрольного газа в трубопровод 2 с расходом G3 подают в него балластный газ с расходом G4, причем G3<G4<G1. Фиксируют времена Тi(1) начала возрастания сигнала газоанализатора 5 (сигнал от переднего фронта контрольного газа), интервалы времениθi(1) возрастания сигнала газоанализатора 5 от фонового до установившегося (максимального) значения и величину установившегося приращения сигнала газоанализатора 5Ai, а также времена Тi(2) начала убывания сигнала газоанализатора 5 (сигнал от заднего фронта контрольного газа) и интервалы времени θ1(2) убывания сигнала газоанализатора 5 от установившегося (максимального) до фонового значения.

Координату места негерметичности Li и ее величину Qi определяют по формулам (1) и (2) соответственно.

Способ позволяет обеспечить определение всех негерметичностей по длине трубопровода в условиях, приближенных к эксплуатационным, при минимальном времени проведения испытаний и при минимальном расходе контрольного газа, в результате чего снижается стоимость проведения испытательных и ремонтно-восстановительных работ криогенного трубопровода.

Высокая точность определения мест множественных течей обеспечивается продувкой трубопровода и полости, образованной поверхностью трубопровода и его оболочкой, газами с неодинаковым расходом. Продувка указанной полости балластным газом с расходом G1 обеспечивает гарантированную раздельную доставку контрольного газа, попавшего в полость из трубопровода через множественные течи, от места течи до газоанализатора. Порционная подача контрольного газа обеспечивает повышенную точность определения места течи за счет появления дополнительного сигнала от заднего фронта порции контрольного газа и сокращениe количества контрольного газа, необходимого для проверки.

Появление дополнительного сигнала от заднего фронта порции контрольного газа эквивалентно осуществлению дополнительной проверки трубопровода, что повышает точность определения места течи. Попеременная продувка трубопровода балластным и контрольными газами при выполнении условия G1<G2<G3 обеспечивает разный темп изменения сигнала газоанализатора от переднего и заднего фронтов порции контрольного газа, что, посредством введения коэффициентов значимости, обеспечивает повышенную точность определения места течи при проведении проверки в условиях, близких к условиям эксплуатации трубопровода по давлению среды.

Проведение проверки трубопровода путем его продувки обеспечивает соответствие кинематического состояния среды при проверке кинематическому состоянию среды при эксплуатации трубопровода.

Похожие патенты RU2039960C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ В ВАКУУМНОЙ КАМЕРЕ 1993
  • Щербаков Э.В.
  • Панов Н.Г.
RU2063013C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ 1990
  • Попов А.Д.
  • Липняк Л.В.
  • Панов Н.Г.
RU2075738C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ЕМКОСТЕЙ, РАБОТАЮЩИХ В ВАКУУМЕ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Липняк Л.В.
  • Панов Н.Г.
  • Попов А.Д.
  • Щербаков Э.В.
RU2032888C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ 1978
  • Горгидзе Анзор Давидович
  • Липняк Лев Вениаминович
  • Ольшанский Вячеслав Алексеевич
  • Щербаков Эдуард Викторович
SU1840701A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЛИЧЕСТВА ГАЗООБРАЗНЫХ ПРОДУКТОВ ДЕЛЕНИЯ В МЕЖЭЛЕКТРОДНЫХ ЗАЗОРАХ ТЕРМОЭМИССИОННОГО ТВЭЛА 1991
  • Синявский В.В.
  • Макеев А.А.
RU2042230C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ 1990
  • Липняк Л.В.
  • Панов Н.Г.
  • Попов А.Д.
RU2054645C1
СПОСОБ КОНТРОЛЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ 1991
  • Липняк Л.В.
  • Панов Н.Г.
  • Попов А.Д.
RU2016385C1
ПУСКОВОЙ АГРЕГАТ 1991
  • Мордвинников И.А.
RU2010989C1
ДЕШИФРАТОР 1990
  • Леденев Г.Я.
  • Федосов А.А.
RU2007030C1
ЦИФРОВАЯ СЛЕДЯЩАЯ СИСТЕМА 1990
  • Бобнев С.А.
  • Стоялов В.В.
RU2037869C1

Иллюстрации к изобретению RU 2 039 960 C1

Реферат патента 1995 года СПОСОБ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ НЕГЕРМЕТИЧНОСТИ

Изобретение относится к испытательной технике и обеспечивает определение множественных негерметичностей криогенного трубопровода в оболочке с одновременным приближением условий определения к эксплуатационным. Продувают полость между трубопроводом и оболочкой балластным газом с расходом G1 Подают в указанную полость в начале контролируемого участка тарированный поток контрольного газа величиной QктРегистрируют интервал времени от момента начала подачи до момента начала регистрации контрольного газа газоанализатором в этой полости в конце контролируемого участка, а также величину установившегося приращения сигнала газоанализатора. Прекращают подачу тарированного потока, продувают трубопровод балластным газом при рабочем давлении, которому соответствует расход G2 причем G2< G1 Прекращают продувку трубопровода балластным газом. Одновременно с прекращением продувки трубопровода балластным газом с расходом G2 подают в него контрольный газ с расходом G3 причем G2< G3< G1 По прошествии времени t прекращают подачу контрольного газа в трубопровод. Одновременно с прекращением подачи контрольного газа в трубопровод с расходом G3 подают в него балластный газ с расходом G4 причем G3< G4< G1 Фиксируют времена начала возрастания сигнала газоанализатора (сигнал от переднего фронта контрольного газа), интервалы времени возрастания сигнала газоанализатора от фонового до установившегося (максимального) значения и величину установившегося приращения сигнала газоанализатора, а также времена начала убывания сигнала газоанализатора (сигнал от заднего фронта контрольного газа) и интервалы времени убывания сигнала газоанализатора от установившегося (максимального) до фонового значения. Координату места негерметичности определяют по соотношению измерительных интервалов времени, а ее величину по соотношению измеренных установившихся перемещений сигнала газоанализатора. 1 ил.

Формула изобретения RU 2 039 960 C1

СПОСОБ ОПРЕДЕЛЕНИЯ ЛОКАЛЬНОЙ НЕГЕРМЕТИЧНОСТИ криогенного трубопровода в оболочке, включающий продувку полости между трубопроводом и оболочкой балластным газом с расходом G1, подачу в указанную полость в начале контролируемого участка тарированного потока контрольного газа величиной Qкт с последующей регистрацией интервала времени Τ от момента начала подачи до момента начала регистрации контрольного газа газоанализатором в этой полости в конце контролируемого участка, а также величины установившегося приращения сигнала газоанализатора Aкт; прекращение подачи тарированного потока, отличающийся тем, что продувают трубопровод балластным газом при рабочем давлении P, которому соответствует расход G2, причем G2 < G1, прекращают продувку трубопровода балластным газом, одновременно с прекращением продувки трубопровода балластным газом с расходом G2 подают в него контрольный газ с расходом G3, причем G2 < G3 < G1, по прошествии времени t прекращают подачу контрольного газа в трубопровод, одновременно с прекращением подачи контрольного газа в трубопровод с расходом G3 подают в него балластный газ с расходом G4, причем G3 < G4 < G1, фиксируют времена Ti (1) начала возрастания сигнала газоанализатора (сигнал от переднего фронта контрольного газа), интервалы времени Q1(1) возрастания сигнала газоанализатора от фонового до установившегося (максимального) значения и величину установившегося приращения сигнала газоанализатора Ai а также времена Ti (2) начала убывания сигнала газоанализатора (сигнал от заднего фронта контрольного газа) и интервалы времени Qi(2) убывания сигнала газоанализатора от установившегося (максимального) до фонового значения, координату места негерметичности Li и ее величину Qi определяют по формулам
Li=0,5×Lтр×(gi(1)×Ti(1)/T+gi(2)×Ti(2)/T);
Qi=Qкт×Ai/Aкт,
где Lтр длина контролируемого участка трубопровода;
gi (1) и gi (2) коэффициенты значимости сигналов газоанализатора от переднего и заднего фронтов контрольного газа соответственно, определяемые из соотношений
gi (1) + gi (2) 1;
gi(1)/gi(2)=Qi(1)/qi(2).

Документы, цитированные в отчете о поиске Патент 1995 года RU2039960C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
ОБОГРЕВАЕМАЯ ЛОПАТКА.'.:А. 1;-.'.. k'.J.v<;^>&j!q ii,'.i.;:5:r^o-\Щ —'-^- 10 I '-^ va^iK^ii^^ *^» • ЕЙЛЛйОТЕКЛ 0
  • С. С. Гасилин, А. А. Михайлов, В. Д. Радченко В. И. Рассказов
SU282585A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 039 960 C1

Авторы

Басов А.А.

Панов Н.Г.

Даты

1995-07-20Публикация

1992-07-01Подача