МИКРОПОРИСТАЯ МЕМБРАНА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ Российский патент 1995 года по МПК B01D69/00 B01D67/00 

Описание патента на изобретение RU2047334C1

Изобретение относится к изготовлению из полимерных пленок микропористых мембран с калиброванными размерами пор, которые могут использоваться в электронной промышленности для очистки жидкостей и газов, в пищевой промышленности для очистки и стабилизации соков, пива, вина, выделении белка при сыроварении и т.д. в коммунальном хозяйстве для очистки воды, в медико-биологических исследованиях для стерилизации биологических сред, для получения чистых кристаллизационных растворов.

Известна микропористая мембрана, характеризующаяся наличием большого числа крупных и неправильных по своей форме пор. Через такой фильтр проходят частицы самых различных размеров и достаточно надежное отфильтровывание частиц с заданными размерами затруднительно: "спектр" пропущенных фильтром частиц оказывается дисперсным, т.е. наряду с малыми частицами, размер которых указан в паспорте фильтра, сквозь фильтр проникает довольно существенное количество более крупных частиц.

Данная мембрана получена следующим способом: исходный материал (полимерную пленку) подвергают одностороннему облучению частицами, энергия которых недостаточна для проникновения материала насквозь. Затем материал облучают с другой стороны частицами, энергия которых также недостаточна для проникновения материала насквозь. Траектории одних и других частиц, используемых для облучения, пересекаются. Химическое травление материала, облученного с обеих сторон, создает поры, причем поры, образующиеся при травлении вдоль пересекающихся траекторий оказываются сквозными.

Наиболее близким аналогом предложенной микропористой мембраны является мембрана с порами в форме воронки диаметром 0,05-10 мкм, расположенными рядами. Наиболее близким аналогом предложенного способа является способ изготовления микропористой мембраны, включающий облучение полимерной пленки через трафарет и ее последующую химическую обработку.

Недостатком фильтра и способа его изготовления, выбранных в качестве прототипа, является принципиальная невозможность достижения высокой пористости фильтров без ухудшения их фильтрационной способности.

Кроме того, при высокой пористости снижается механическая прочность мембран. При использовании таких фильтров в условиях перепада давлений, необходимо наличие поддерживающей сетки.

Задачи, на решение которых направлено предлагаемое изобретение: повышение пористости фильтра за счет увеличения количества пор фильтра на единицу площади, без ухудшения его фильтрующей способности и механической прочности мембра- ны.

Решение поставленных задач достигается тем, что микропористая мембрана имеет толщину до 1000 мкм, снабжена упрочняющей сеткой, которая расположена в теле мембраны и формируется одновременно с порами, а в качестве экспонирующего используют рентгеновское излучение, которое проходит через трафарет с заданной геометрической формой и размером отверстий, рисунок которого копируется на одну или одновременно несколько пленок, толщиной до 1000 мкм.

На фиг. 1, 2 представлены образцы, поясняющие конструкцию предлагаемой микропористой мембраны (на фиг. 1 вид мембраны сверху, на фиг. 2 вид мембраны сбоку); на фиг. 3 схема, поясняющая процесс изготовления микропористой мембраны; на фиг. 4 образец микропористой мембраны, изготовленный по предлагаемому способу. Диаметр пор составляет 0,5 мкм, пористость 20% на фиг. 5 образец микропористой мембраны, изготовленный по предлагаемому способу. Размер отверстий составляет 0,7 мкм, пористость 40%
Микропористая мембрана представляет собой пленку 1, толщиной до 1000 мкм с калиброванными размерами и заданной геометрической формой пор 2, которые расположены упорядоченно, занимают до 95% рабочей площади фильтра, имеют вертикальные стенки и ориентированы перпендикулярно к поверхности мембраны. Мембрана может быть снабжена упрочняющей сеткой, которая расположена в теле мембраны и формируется одновременно с порами.

Процесс изготовления микропористой мембраны с калиброванными размерами пор в соответствии с предложенным способом может выглядеть следующим образом. В зависимости от количества экспонируемых пленок, их толщины и размера пор на трафарете и на обрабатываемых пленках подбирается рабочая длина волны экспонирующего излучения. В качестве экспонирующего излучения используется синхротронное излучение.

Затем исходную полимерную пленку 1 облучают рентгеновским излучением 3 через трафарет 4, отстоящий от пленки на определенном микрозазоре, после чего проводят дополнительное фоновое облучение 6, а затем физико-химическую обработку.

Последовательное воздействие рентгеновского 3 и фонового 6 излучений и окислителя на пленку приводят к образованию мест с повышенной растворимостью на участках пленки, соответствующих рентгенопрозрачным участкам 5 трафарета 4. По окончанию процессов экспонирования и окисления пленку подвергают воздействию десятипроцентного раствора щелочи (NaOH), в результате чего участки 7 пленки, подвергшиеся воздействию рентгеновского излучения, растворяются и на их месте образуются сквозные поры 2. Поскольку трафарет имеет строго периодичную структуру (например, в виде "пчелиных сот", что дает максимальную пористость), то и поры на пленке имеют периодичную структуру, соответствующую структуре на трафарете.

Приведем несколько примеров изготовления микропористой мембраны с различной пористостью.

Лавсановую пленку толщиной 2,5 мкм экспонируют рентгеновским излучением в режиме работы ускорителя: Е 1,2 ГэВ, λc 1,19 нм в течение 10 мин (доза облучения 20 мА. ч) через трафарет, имеющий отверстия диаметром 0,3 мкм с расстоянием между их центрами 1,0 мкм (при токе в ускорителе 120 мА), затем проводят фоновое облучение ультрафиолетом в течение 60 мин и обработку в 20% растворе NaOH при температуре 60оС в течение 40 мин, проводят промывку и сушку. В результате формируется микропористая мембрана с порами размером 0,3 мкм и пористостью 7% (фиг. 1).

Лавсановую пленку толщиной 2,5 мкм экспонируют рентгеновским излучением в режиме работы ускорителя: Е 1,2 ГэВ, λc 1,19 нм в течение 10 мин через трафарет, имеющий отверстия диаметром 0,5 мкм с расстоянием между их центрами 1,0 мкм, затем проводят фоновое облучение ультрафиолетом в течение 60 мин, затем обработку в 20% растворе NaOH при температуре 60оС в течение 50 мин, проводят промывку и сушку. Полученная микропористая мембрана имеет поры диаметром 0,5 мкм, пористость 20% (фиг. 4).

Лавсановую пленку толщиной 10 мкм экспонируют рентгеновским излучением в режиме работы ускорителя: Е 1,2 ГэВ, λc 1,19 нм в течение 15 мин через трафарет, имеющий отверстия диаметром 0,7 мкм с шагом 1,0 мкм (доза облучения 20 мА. ч), затем проводят ультрафиолетовое облучение в течение 120 мин, обработку в 10% растворе NaOH при температуре 60оС в течение 120 мин, промывку и сушку. Микропористая мембрана в данном случае при размере пор 0,7 мкм имеет пористость 40% (фиг. 5).

Лавсановую пленку толщиной 100 мкм экспонируют рентгеновским излучением в режиме работы ускорителя: Е 2,0 ГэВ, λc 0,25 нм в течение 40 мин через трафарет, имеющий отверстия 2,0 х 2,0 мкм и ширину перемычек между отверстиями 0,2 мкм, затем проводят фоновое облучение ультрафиолетом, обработку в 20% растворе NaOH при температуре 60оС в течение 5 ч, затем промывка, сушка. В результате формируется микропористая мембрана с порами 2,0 х 2,0 мкм и пористостью 80%
Лавсановую пленку толщиной 1000 мкм в течение 60 мин экспонируют рентгеновским излучением с характеристической длиной волны λc 0,25 нм в режиме работы ускорителя: энергия электронов Е 2,0 ГэВ, средний ток I 80 мА через трафарет, имеющий рисунок "пчелиных сот" с периодом 200 мкм и шириной перемычек 10,0 мкм, затем проводят фоновое облучение ультрафиолетом, обработку в 20% растворе NaOH при температуре 60оС в течение 50 ч, затем выполняется промывка и сушка. В результате формируется микропористая мембрана толщиной 1000 мкм с отверстиями шестиугольной формы размером 190 мкм, разделенными перемычками шириной 10 мкм, при этом достигается 95% пористость мембраны.

Такие мембраны могут быть использованы для очистки жидкостей от механических примесей.

Микропористая мембрана может быть выполнена, в зависимости от трафарета, с пересекающимися участками без пор, которые играют роль упрочняющей сетки. Дорожки без пор формируются одновременно с порами и задаются рисунком трафарета. Мембрана может быть выполнена и без упрочняющей сетки.

Так как предлагаемый способ обеспечивает формирование пор с перпендикулярными поверхности мембраны стенками, максимальная пористость ограничивается только механической прочностью микропористой мембраны или шириной перемычек между порами, которые не могут быть меньше 0,1-0,2 мкм.

Пористость определяется по следующей формуле:
P · 100 где m1 теоретическая масса полимерного диска, имеющего ту же плотность и те же размеры (толщину и диаметр), что и материал мембраны.

m2 фактическая масса микропористой мембраны.

При ширине перемычки 0,2 мкм, максимальная пористость мембраны с размерами пор 10 х 10 мкм составит 98%
Разрешающая способность метода обеспечивает формирование микропористой мембраны с размерами пор 0,05-0,1 мкм.

Похожие патенты RU2047334C1

название год авторы номер документа
МНОГОСЛОЙНЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ УЛЬТРА- И МИКРОФИЛЬТРАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Жданов Г.С.
  • Фурсов Б.И.
  • Красавина Т.А.
  • Туманов А.А.
  • Чикин Ю.А.
  • Мчедлишвили Б.В.
  • Нечаев А.Н.
RU2170136C1
РЕЛЬЕФНАЯ ПОРИСТАЯ МЕМБРАНА (ВАРИАНТЫ), СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) И МЕМБРАННЫЕ ЭЛЕМЕНТЫ ИЗ РЕЛЬЕФНОЙ ПОРИСТОЙ МЕМБРАНЫ (ВАРИАНТЫ) 2009
  • Басин Борис Яковлевич
  • Басин Александр Борисович
  • Вотяков Андрей Александрович
  • Швыркин Анатолий Алексеевич
RU2405620C2
СПОСОБ ПРОВЕДЕНИЯ ТЕНЕВОЙ ТРАФАРЕТНОЙ РЕНТГЕНОЛИТОГРАФИИ 2007
  • Генцелев Александр Николаевич
  • Гольденберг Борис Григорьевич
  • Елисеев Владимир Сергеевич
  • Кондратьев Владимир Иванович
  • Петрова Екатерина Владимировна
  • Пиндюрин Валерий Федорович
RU2350994C1
СПОСОБ ИЗГОТОВЛЕНИЯ АНИЗОТРОПНОЙ ТРЕКОВОЙ МЕМБРАНЫ (ВАРИАНТЫ) 2000
  • Жданов Г.С.
  • Фурсов Б.И.
  • Красавина Т.А.
  • Туманов А.А.
  • Мчедлишвили Б.В.
  • Нечаев А.Н.
RU2179063C1
БЫТОВОЙ ФИЛЬТР ДЛЯ ТОНКОЙ ОЧИСТКИ ВОДЫ 1994
  • Емельянова Лариса Павловна
  • Мельников Александр Игнатьевич
  • Савин Николай Андреевич
  • Соляник Ростислав Семенович
RU2145943C1
СПОСОБ ИЗГОТОВЛЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА 1992
  • Алдошин Александр Стефанович
  • Барсуков Игорь Борисович
  • Воробьев Евгений Дмитриевич
  • Кузнецов Владислав Иванович
  • Никитский Юрий Дмитриевич
  • Тычков Юрий Игоревич
  • Шестаков Владимир Дмитриевич
RU2054302C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕМБРАННОГО ФИЛЬТРА 2010
  • Кузьмин Сергей Михайлович
  • Матвеев Вячеслав Михайлович
  • Мишачев Виктор Иванович
  • Сергеев Олег Вячеславович
RU2446863C1
Макропористый керамический материал с углеродным нановолокнистым покрытием и способ его получения 2016
  • Кривошапкин Павел Васильевич
  • Кривошапкина Елена Федоровна
  • Мишаков Илья Владимирович
  • Ведягин Алексей Анатольевич
RU2620437C1
ПЕРФОРИРОВАННАЯ МЕМБРАНА И СПОСОБ ЕЁ ИЗГОТОВЛЕНИЯ 2002
  • Мамаев А.И.
  • Мамаева В.А.
RU2226425C2
ПЕРФОРИРОВАННАЯ МЕМБРАНА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1992
  • Евдокимов А.Н.
  • Кириллов А.Г.
  • Клюев О.Ф.
  • Константинов И.О.
  • Крыса В.К.
  • Матухин П.Г.
  • Мухамедзянов А.Г.
  • Смирнов В.А.
RU2042411C1

Иллюстрации к изобретению RU 2 047 334 C1

Реферат патента 1995 года МИКРОПОРИСТАЯ МЕМБРАНА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к изготовлению из полимерных пленок микропористых мембран с калиброванными размерами пор, которые могут использоваться в электронной промышленности для очистки жидкостей и газов, в пищевой промышленности для очистки и стабилизации соков, пива, вина, выделения белка при сыроварении и т. д. в коммунальном хозяйстве для очистки воды, в медико-биологических исследованиях для стерилизации биологических сред, для получения кристаллизационных растворов. Микропористая мембрана из полимерной пленки имеет пористость до 95% при толщине до 1000 мкм, а поры выполнены с перпендикулярными поверхности пленки стенками. Мембрана может быть снабжена упрочняющей сеткой, расположенной в теле мембраны. Способ изготовления мембраны включает облучение исходной пленки рентгеновским излучением через трафарет, дополнительное фоновое облучение и последующую физико-химическую обработку. 2 с. и 1 з. п. ф лы, 5 ил.

Формула изобретения RU 2 047 334 C1

1. Микропористая мембрана в виде полимерной пленки с калиброванными порами, упорядоченно расположенными на ее поверхности, отличающаяся тем, что пористость мембраны составляет до 95% при толщине до 1000 мкм, а поры выполнены с перпендикулярными поверхностями пленки стенками. 2. Мембрана по п.1, отличающаяся тем, что дополнительно снабжена упрочняющей сеткой, расположенной в теле мембраны. 3. Способ изготовления микропористой мембраны, включающий облучение пленки экспонирующими излучением через трафарет, дополнительное фоновое облучение и последующую физико-химическую обработку, отличающийся тем, что в качестве полимерной пленки используют пленку толщиной до 1000 мкм, а в качестве экспонирующего применяют рентгеновское излучение.

Документы, цитированные в отчете о поиске Патент 1995 года RU2047334C1

САМОЗАТАЧИВАЮЩИЙСЯ РЕЗЕЦ 0
SU270441A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 047 334 C1

Авторы

Дейс Г.А.

Гаврюшкина Н.И.

Прокопенко В.С.

Артамонова Л.Д.

Генцелев А.Н.

Скринский А.Н.

Синюков М.П.

Кулипанов Г.Н.

Пиндюрин В.Ф.

Ли С.Б.

Мезенцева Л.А.

Редин О.А.

Макаров О.А.

Гаштольд В.Н.

Даты

1995-11-10Публикация

1992-08-27Подача