Изобретение относится к металлургии редких и переходных металлов, в частности к металлургии скандия.
Известен способ получения металлического скандия с применением щелочных металлов в качестве восстановителя, заключающийся в том, что в начале процесса дозированный ScCl3 восстанавливают металлическим калием. После выдержки при 400оС в течение 15 ч добавляют натрий и довосстанавливают при 1000оС в течение 8 ч.
Недостатком способа является то, что в конечном продукте содержится до 10% примесей.
Цель изобретения заключается в снижении количества примесей и в увеличении выхода крупных фракций скандия.
Это достигается путем загрузки в реакционный стакан на поверхность плава хлоридов скандия хлоридов натрия и калия перед подачей расплавленного металлического натрия.
Сущность способа заключается в следующем. В реакционный стакан загружают плав хлоридов скандия, затем на поверхность подают смесь хлоридов натрия и калия, при этом количество хлоридов щелочных металлов и плава хлорида скандия поддерживают в соотношении 1:3-5. Затем исходные реагенты нагревают до температуры 850-900оС в атмосфере аргона. После этого исходный металлический натрий подают на поверхность хлоридов щелочных металлов, в результате натрий растворяется и диффундирует в направлении хлоридов скандия. В этом случае соблюдается следующее условие: отношение диаметра реакционного стакана к высоте расплава поддерживается 1:1,5-2.
В результате реакции происходит восстановление хлоридов скандия с образованием крупных кристаллов с минимальным содержанием примесей.
Это обеспечивается за счет медленной скорости восстановления, так как натрий диффундирует через слой соли; протекания процесса между натрием, растворенным в хлоридах щелочных металлов, и хлоридом скандия, растворенным также в хлоридах щелочных металлов (положительная роль прочного комплексного соединения); натрий поступает в зону реакции с минимальным содержанием примесей, так как он растворяется в хлориде натрия и примеси флюсуются на поверхность расплава.
В конечном итоге образуется крупнокристаллический скандий и выход мелких, нетоварных фракций уменьшается.
Выбор параметров обусловлен следующим: в случае количества погружаемых хлоридов натрия и калия более 1:5 к плаву хлоридов скандия будут созданы условия, неблагоприятные для осуществления процесса в диффузионном режиме и будет образовываться значительное количество дисперсного, загрязненного скандия. При отношении менее 1:3 наличие большого количества хлоридов щелочных металлов значительно снизит цикловую производительность установки.
Проведение процесса восстановления при высоте расплава к диаметру более 1:2 может не обеспечить полного восстановления хлоридов скандия или приведет к значительному удлинению процесса. В случае отношения менее 1:1,5 условия для роста кристаллов скандия будут неблагоприятные и количество загрязненного скандия будет возрастать, так как уменьшается вероятность протекания процесса в диффузионном режиме.
П р и м е р. Способ осуществляли на лабораторной установке, состоящей из шахтной электропечи, герметичного реактора, реакционного стакана. Установка оборудована системой подачи жидкого натрия. Процесс осуществляли в атмосфере аргона, температура процесса 850-950оС. В реакционный стакан перед началом опыта загружали плав хлоридов скандия, натрия и калия; содержание трехвалентного скандия составляло 10-12 мас. На поверхности плава размещали слой предварительно проплавленной соли, состоящей из хлорида натрия и калия. Аппарат монтировали, нагревали при вакуумировании до 200оС и далее под аргоном. При 850-950оС осуществляли подачу жидкого натрия на поверхность расплава. По окончании подачи восстановителя производили выдержку. После охлаждения реакционную массу выщелачивали, полученный кристаллический скандий рассеивали по фракциям. Полученные результаты приведены в таблице.
Сравнительные испытания предлагаемого и известного способов получения скандия свидетельствуют о том, что при его осуществлении по разработанной технологии выход крупных высококачественных фракций возрастает. Это достигается за счет дополнительной очистки исходного натрия и осуществления процесса в диффузионном режиме восстановления комплексных соединений хлорида скандия натрием, растворенным в хлоридах щелочных металлов.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения металлического скандия высокой чистоты | 2020 |
|
RU2748846C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО СКАНДИЯ | 1992 |
|
RU2038397C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО ХЛОРИДА СКАНДИЯ, КАЛИЯ, НАТРИЯ И АММОНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1991 |
|
RU2051103C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО ХЛОРИДА СКАНДИЯ И ЩЕЛОЧНОГО МЕТАЛЛА | 2012 |
|
RU2497755C1 |
СПОСОБ ПОЛУЧЕНИЯ ТИТАНОВОГО ПОРОШКА | 1993 |
|
RU2043873C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННОГО ПОРОШКА ВЕНТИЛЬНОГО МЕТАЛЛА | 2003 |
|
RU2236930C1 |
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА НА ОСНОВЕ АЛЮМИНИЯ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2015 |
|
RU2621207C1 |
СПОСОБ ПОЛУЧЕНИЯ ОКИСЛИТЕЛЯ НА ОСНОВЕ ФЕРРАТОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2381180C2 |
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ | 1992 |
|
RU2016112C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ КОБАЛЬТА | 1997 |
|
RU2095451C1 |
Изобретение относится к способу получения кристаллического скандия восстановлением плава хлоридов скандия расплавленным металлическим натрием при подаче его на поверхность плава в реакционный стакан. Сущность: перед подачей металлического натрия на поверхность плава загружают смесь хлоридов натрия и калия при соотношении хлоридов натрия и калия к плаву хлоридов скандия в расплаве 1 3 5 и отношении диаметра реакционного стакана к высоте расплава 1 1,5 2,0. 2 з. п. ф-лы, 1 табл.
Коршунов Б.Г., Резник А.М | |||
и Семенов С.А | |||
Скандий | |||
М.: Металлургия, 1987, с.155-156. |
Авторы
Даты
1995-11-20—Публикация
1992-07-29—Подача