ЖАРОПРОЧНЫЙ СПЛАВ Российский патент 1995 года по МПК C22C19/05 

Описание патента на изобретение RU2049138C1

Изобретение относится к металлургии, в частности к использованию в качестве сплавов для изготовления жаропрочных реакционных труб установок производства этилена, водорода, аммиака и др. с рабочими режимами при 700-1100оС и давлением до 46 атм.

В качестве прототипа выбран сплав, содержащий, хром 37-40; железо 9-12; углерод не более 0,08; кремний не более 0,4; марганец не более 0,5; сера не более 0,01; фосфор не более 0,01; никель остальное.

Срок службы центробежнолитых труб из стали прототипа в печах пиролиза составляет 8000-24000 ч и основной причиной выхода из строя является их разрушение из-за объемно-структурных напряжений, возникающих в стенке трубы в процессе насыщения металла углеродом. Таким образом, основным фактором, определяющим срок службы труб в печах пиролиза мощных установок, является сопротивляемость науглероживанию металла этих труб.

Предлагаемый сплав имеет относительно низкую сопротивляемость науглероживанию. Увеличение содержания кремния в стали до 2,5% дает значительный эффект повышения стойкости стали в углеводородистой среде за счет уменьшения диффузионных процессов на стадиях адсорбции и абсорбции.

Технический результат заключается в повышении долговечности труб из сплава с оптимальным содержанием в нем компонентов и за счет повышения его сопротивляемости науглероживанию.

Технический результат достигается тем, что жаропрочный сплав содержит, углерод 0,20-0,45; кремний 1,00-2,50; марганец 0,8-1,5; хром 23,0-27,0; никель 18,0-22,0; сера не более 0,03; фосфор не более 0,03; железо остальное.

Содержание в сплаве меди не должно превышать 0,20% молибдена 0,50% свинка, олова, мышьяка и цинка в сплаве не более 0,01% каждого.

Исследования по науглероживанию проводились на цилиндрических образцах из данного сплава диаметром 10 мм и длиной 50 мм с чистотой поверхности Rz 80. Испытания проводились при максимальной рабочей температуре труб в печах пиролиза мощных установок получения этилена равной 1060оС в течение 48-50 ч. После двух циклов (≈100 ч) образцы подвергали очистке от сажи, промывке и взвешиванию. Кинетику науглероживания оценивали по изменению массы образцов в зависимости от времени насыщения, а склонность стали к науглероживанию по глубине науглероженного слоя и максимальной концентрации углерода в нем после различной продолжительности насыщения.

Результаты металлографического исследования образцов после науглероживания при 1060оС в течение 1000 ч следующие:
Увеличение массы, кг/см2 +56,2
Глубина окисления, мм 0,2-0,3
Глубина обезуглеро- живания, мм 0,2-0,23
Глубина науглерожи- вания, мм 2,5-3,0
Изменение содержания углерода в слое исследуемой стали после науглероживания ее в течение 1000 ч при 1000оС приведены в табл. 1.

Результаты металлографического исследования образцов и химического анализа показали, что сталь из предлагаемого сплава имеет высокую сопротивляемость науглероживанию за счет повышения в этом сплаве содержания кремния.

Предлагаемый сплав содержит следующие элементы, Углерод 0,20-0,45 Кремний 1,00-2,50 Марганец 0,8-1,5 Хром 23-27 Никель 18-22 Сера Не более 0,03 Фосфор Не более 0,03
Механические свойства предлагаемого сплава следующие:
Предел прочности σв, кгс/мм2 45
Предел прочности σ0,2, кгс/мм2 25
Относительное удлинение δ5, 10
Относительное сужение Ψ, 10
Сравнение данных по механическим свойствам показывает, что предлагаемый сплав не уступает известному сплаву и находится на уровне импортных аналогов.

В табл. 2 приведены механические свойства исследуемого металла при 20; 200-1100оС методом кратковременного разрыва переднего конца трубы.

С повышением температуры испытаний до 1100оС наблюдается уменьшение значений пределов текучести и увеличение пластичности исследуемой трубы, что является характерным для металла центробежных труб из жаропрочных сталей.

Результаты исследования влияния длительного нагрева на структуру и свойства металла труб представлены на фиг. 1-3 и в табл. 3.

На фиг. 1 представлена фотография микроструктуры металла в исходном состоянии; на фиг. 2 то же, после старения металла при 800оС в течение 24 ч; на фиг. 3 то же, после старения металла при 900оС в течение 24 ч.

Результаты показывают, что кратковременное старение (24 ч) приводит к небольшому уменьшению относительного удлинения и возрастанию прочностных характеристик при 20оС. С увеличением продолжительности старения до 1000 ч значения механических свойств изменяются мало.

Испытания образцов при температуре старения 800 и 900оС выявило понижение прочностных характеристик (σв, σ0,2) и повышение пластических характеристик ( δ5, Ψ).

Падение пластичности в результате длительного нагрева связано с выпадением карбидов по границам и объему зерна.

После 24 ч старения при 800оС в металле трубы из данного сплава наблюдается небольшое выпадение карбидов вблизи участков карбидных эвтектик.

С увеличением выдержки при 900оС имеет место некоторая коагуляция карбидов.

Исходя из этого можно сказать, что металл исследуемой трубы при 900оС старится мало, при этом механические свойства и структура изменяются незначительно.

Одним из основных факторов, определяющим работоспособность труб при высоких температурах является жаропрочность, которая определяется испытанием на длительный разрыв при 950оС и различных напряжениях. В результате исследований получено, что предел длительной прочности за 10000 ч равен 2 кгс/мм2 и приблизительный предел длительной прочности за 100000 ч 1,2 кгс/мм2.

Таким образом, исследование металла из данного сплава показало, что по структуре и механическим свойствам отечественная труба соответствует требованиям ТУ, находится на уровне импортных аналогов.

Похожие патенты RU2049138C1

название год авторы номер документа
ЖАРОПРОЧНЫЙ СПЛАВ 1994
  • Байдуганов А.М.
  • Гурков Д.М.
  • Медведев Ю.С.
  • Ощепков В.Ф.
RU2049139C1
ЖАРОПРОЧНЫЙ СПЛАВ 2009
RU2395607C1
ЖАРОПРОЧНЫЙ СПЛАВ 2016
RU2614973C1
ЖАРОПРОЧНЫЙ СПЛАВ 2016
RU2632497C2
ЖАРОПРОЧНЫЙ СПЛАВ 2016
RU2632728C2
ЖАРОПРОЧНЫЙ СПЛАВ 2015
RU2579405C1
ЖАРОПРОЧНЫЙ СПЛАВ 1998
RU2149212C1
ЖАРОПРОЧНЫЙ СПЛАВ 1998
RU2149209C1
ЖАРОПРОЧНЫЙ СПЛАВ 1994
RU2095458C1
ЖАРОПРОЧНЫЙ СПЛАВ 1994
RU2095457C1

Иллюстрации к изобретению RU 2 049 138 C1

Реферат патента 1995 года ЖАРОПРОЧНЫЙ СПЛАВ

Использование: жаропрочный сплав используется в качестве сплавов для изготовления жаропрочных реакционных труб установок производства этилена, водорода, аммиака и др. с рабочими режимами при 700 1100°С и давлением до 46 атм. Сущность изобретения: жаропрочный сплав содержит компоненты в следующем соотношении, мас. углерод 0,20 0,45; кремний 1,00 2,50; марганец 0,80 1,50; хром 23,0 27,0; никель 18,0 22,0; сера не более 0,03; фосфор не более 0,03; железо остальное. 3 ил.3 табл.

Формула изобретения RU 2 049 138 C1

ЖАРОПРОЧНЫЙ СПЛАВ, содержащий углерод, кремний, марганец, хром, никель, серу, фосфор и железо, отличающийся тем, что он содержит компоненты в следующем соотношении, мас.

Углерод 0,20 0,45
Кремний 1,00 2,50
Марганец 0,80 1,50
Хром 23,0 27,0
Никель 18,0 22,0
Сера Не более 0,03
Фосфор Не более 0,03
Железо Остальное

Документы, цитированные в отчете о поиске Патент 1995 года RU2049138C1

ЖАРОСТОЙКИЙ СПЛАВ 0
  • А. И. Максимов, П. В. Сорокин, Б. И. Бекетов, А. С. Лобода,
  • Д. И. Бережковский, В. Л. Соколов, К. П. Бикезин, Ю. В. Виноградов
  • С. В. Карлов
SU312887A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 049 138 C1

Авторы

Байдуганов А.М.

Гурков Д.М.

Медведев Ю.С.

Ощепков В.Ф.

Даты

1995-11-27Публикация

1994-06-14Подача