ТЕПЛОМАССООБМЕННЫЙ АППАРАТ ГАСПАКА-1 Российский патент 1995 года по МПК B01D11/02 

Описание патента на изобретение RU2050918C1

Изобретение относится к аппаратам для проведения тепломассообменных процессов в высококонцентрированных суспензиях в химической, фармацевтической, пищевой и других отраслях промышленности, связанных с обработкой твердых дисперсий растительного, животного, минерального и химического происхождения.

Известен пульсационный экстрактор для проведения массообменых процессов жидкофазных смесях и разбавленных суспензиях, включающий U-образную экстракционную колонку с равновеликим (по всей длине рабочей зоны) поперечным сечением с двумя пульсационными камерами в верхней части ее колен, с патрубками для подвода двух полупериодных пневматических импульсов, контактными устройствами (тарелками), поперечно секционирующими рабочую зону аппарата, по два патрубка по концам каждого колена для подачи и отвода потоков дисперсионной и дисперсной сред.

Недостатком аппарата является невысокая эффективность при проведении в нем процессов тепломассообмена с твердыми дисперсиями из-за их низкой концентрации и неразвитой удельной поверхности массопередачи. Традиционное наложение симметричных пульсаций с частотой 0,5-1,5 Гц и амплитудой 0,03-0,05 м на контактирующие потоки сред не оказывает существенного влияния ни на интенсивность процесса, ни на эффективность использования рабочего объема аппарата. Пульсации оказывают влияние на интенсивность массообмена главным образом за счет интенсификации массопереноса в пограничных слоях жидкой среды. Работоспособность аппарата ограничивается концентрациями суспензии до 20 и размерами твердых частиц до 10-3 м. Наложение пульсаций приводит к снижению предельных технологических скоростей сред на 10-20
Близок по характерным признакам к предлагаемому изобретению пульсационный экстрактор, включающий цилиндрический корпус с установленным в нем коаксиальным цилиндром с поперечным сечением меньше кольцевого сечения, образуемого им с корпусом, патрубок на коаксиальном цилиндре для подвода однонаправленных пневматических импульсов давления, патрубки для подвода и отвода дисперсионной и дисперсной сред, контактные устройства, поперечно секционирующее кольцевое пространство аппарата.

Вместе с отмеченными выше недостатками в этом аппарате неэффективно используется его рабочий объем. Процесс протекает только в рабочей зоне кольцевого пространства.

Потеря работоспособности известных конструкций пульсационных аппаратов с ростом концентрации и размера частиц твердой дисперсии связано с качественными изменениями рабочей среды. При концентрациях твердой дисперсии 20 и более на свойствах рабочей среды начинает проявляться взаимодействие частиц твердой дисперсии. Рабочая смесь приобретает свойства текучих гранулированных сред, в которых при сдвиге возникают дисперсионное давление и трение на стенках канала, связанные законом Кулона.

В этом случае любое сужение канала может привести к образованию пробок. Устойчивое равномерное управление технологическими потоками взаимодействующих сред становится невозможным.

Задача изобретения повышение эффективности процесса тепломассообмена в высококонцентрированных суспензиях за счет использования для технологического транспортирования твердой дисперсии эффектов пульсационного течения гранулированной среды, легкой управляемости потоками контактирующих сред и режимами проведения процесса, а также создание близких к оптимальным условий для тепломассообмена.

Гидродинамические условия процесса, концентрация твердой дисперсии, режимы движения рабочей смеси определяют выбор конструктивной схемы аппарата и его основных геометрических и режимных параметров. Одним из вариантов конструктивного оформления аппарата, обеспечивающим формирование в нем гранулированной среды, устойчивой к внешним возмущениям, является полый U-образный канал с сечением колен, отвечающим соотношению S1<S2. Колено с сечением S1 является приемным, а колено с сечением S2 отводящим для твердой фазы. Технологическое транспортирование твердой дисперсии происходит при пульсационном воздействии импульсами давления на гранулированную среду через приемное колено аппарата. Импульс давления совершает работу по преодолению сил трения среды и созданию перепада столбов жидкости в коленах канала. За счет этого перепада происходит возврат ее к исходному уровню в режиме фильтрации через неподвижный слой твердой дисперсии. В первом приближении местным гидравлическим сопротивлением при переходе из одного колена аппарата в другое можно пренебречь, и величина импульса давления определяется из условия равенства нулю импульса сил, действующих на среду во время движения. Поэтому после некоторых упрощений имеем выражение
p>D1-9,0L1+ L-<ρ>gD1<h -h1>= 0 где в скобках обозначены средние значения заключенных в них величин; Δ р избыточное давление в секции приемного колена с диаметром D1; V1 -V скорость в канале с диаметром D1; h2 и h1 средние уровни среды в отводящем втором и первом приемном каналах в начале и в конце ее движения; D2 диаметр отводящего канала; ρ, η плотность и вязкость среды; L1(2) длины колен; d средний диаметр частиц; λ l/[Co/C)1/2-l] где Со ≃ 0,75 максимальная концентрация твердой дисперсии.

На фиг. 1 представлена конструктивная схема тепломассообменного аппарата; на фиг. 2 вид А на фиг. 1, аппарат с гравитационной эвакуацией твердой дисперсии (вариант I).

Аппарат состоит из корпуса 1, разделенного вертикальной перегородкой 2, наглухо соединенной с верхним днищем аппарата, пульсационной камеры 3, соединенной через патрубок 4 с источником импульсов давления, бункера смесителя 5 твердой дисперсии с выходящим потоком дисперсионной среды, штуцеров 6,7 для подачи твердой дисперсии и отвода дисперсионной среды, устройства 8 для эвакуации твердой дисперсии, выполненного в виде примыкающего к верхнему днищу окна в боковой стенке аппарата с отводящим лотком 9 (вариант I), или бункера приемника со шнеком и приводом (вариант II), штуцера 10 для подачи дисперсионной среды.

Бункер-смеситель 5 состоит из корпуса, люка 11, штуцеров 12 и 13 для отвода и приема экстракта, шнека питателя с приводом 14.

Аппарат работает следующим образом.

Устанавливается заданный расход дисперсионной среды через штуцера 10, 12 и 13. Через люк 11 загружается твердая дисперсия и шнеком-питателем 14 подается через штуцер 6 в аппарат. Подача твердой дисперсии осуществляется при подаче через штуцер 4 расчетных импульсов. При загрузке аппарата твердой дисперсией отводится избыточный объем жидкости. При достижении предельной концентрации твердой дисперсии в аппарате формируется гранулированная среда, которая перемещается под воздействием импульсов давления в отводящее колено канала. По мере перемещения твердой дисперсии к выгружному устройству 9 выше уровня дисперсионной среды формируется уплотненный слой дисперсии в виде "пробки" свободной от дисперсионной среды (жидкости). При достижении "пробки" нижнего среза выгружного окна происходит разрушение ее и эвакуация в отводящий лоток 9 или в бункер-приемник.

Движение гранулированной среды происходит со скоростями, на два порядка превышающими скорость псевдоожижения. Твердая дисперсия движется в режиме, близком к поршневому, за исключением пристенных слоев с толщиной примерно 5 d. При движении частицы совершают хаотическое движение относительно друг друга.

Гидродинамика гранулированных сред в последние десятилетия привлекает внимание исследователей. Результаты этих исследований хорошо согласуются с наблюдаемой в исследованных моделях гидродинамикой и сопутствующим эффектам. Экспериментальные измерения и расчеты импульсов давления, их продолжительность дают значения рабочих давлений порядка 500-1000 Па, при отношении времени его приложения к времени возврата дисперсионной среды к исходному уровню от единицы и менее. Продолжительность действия импульса давления на среду находится в пределах 0,1-5 с.

Похожие патенты RU2050918C1

название год авторы номер документа
ТЕПЛОМАССООБМЕННЫЙ АППАРАТ ГАСПАКА-2 1994
  • Гурьянов Алексей Ильич
  • Сигал Павел Абрамович
  • Костерин Александр Васильевич
  • Гумеров Рафик Хафизович
  • Зуев Юрий Алексеевич
  • Петров Валерий Григорьевич
  • Астров Родион Вячеславович
  • Клементьев Геннадий Иванович
  • Матросов Владимир Евгеньевич
  • Бородулин Сергей Васильевич
  • Белякаев Юрий Владимирович
  • Урманчеев Мансур Гумерович
RU2123876C1
СПОСОБ НЕПРЕРЫВНОГО ПРОТИВОТОЧНОГО ПРОВЕДЕНИЯ ГИДРОМЕХАНИЧЕСКИХ, ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ПОДВИЖНОМ ПЛОТНОМ СЛОЕ ДИСПЕРСИИ 1993
  • Гурьянов Алексей Ильич
  • Сигал Павел Абрамович
  • Белякаев Юрий Владимирович
  • Гильмутдинов Иль Гарафеевич
  • Зуев Юрий Алексеевич
  • Калинин Сергей Аркадьевич
  • Малинин Василий Сергеевич
  • Матросов Владимир Евгеньевич
  • Петров Валерий Григорьевич
  • Хапугин Анатолий Петрович
RU2057570C1
СПОСОБ ГАСПАКА ПРОВЕДЕНИЯ НЕПРЕРЫВНОГО ТЕПЛОМАССООБМЕННОГО ПРОЦЕССА 1993
  • Гурьянов Алексей Ильич
  • Сигал Павел Абрамович
  • Костерин Александр Васильевич
RU2050917C1
СПОСОБ ПРОВЕДЕНИЯ ТЕПЛОМАССООБМЕННЫХ И ГИДРОДИНАМИЧЕСКИХ ПРОЦЕССОВ 1993
  • Гурьянов Алексей Ильич
  • Алексеев Юрий Владимирович
  • Сигал Павел Абрамович
  • Гильмутдинов Иль Гарафеевич
  • Зуев Юрий Алексеевич
  • Лукашов Анатолий Иванович
  • Малинин Василий Сергеевич
  • Сафин Ренат Рауфович
RU2100044C1
СИЛОВАЯ УСТАНОВКА 1989
  • Меньшиков Станислав Степанович
RU2029880C1
ЭЛЕКТРИЧЕСКИЕ, МЕХАНИЧЕСКИЕ, ВЫЧИСЛИТЕЛЬНЫЕ И/ИЛИ ДРУГИЕ УСТРОЙСТВА, СФОРМИРОВАННЫЕ ИЗ МАТЕРИАЛОВ С ЧРЕЗВЫЧАЙНО НИЗКИМ СОПРОТИВЛЕНИЕМ 2012
  • Гилберт Дуглас Дж.
  • Штейн Евгений Юджин
  • Смит Майкл Дж.
  • Ханна Джоэл Патрик
  • Гринлэнд Пол
  • Коппа Брайан
  • Норт Форрест
RU2612847C2
СИСТЕМА (ВАРИАНТЫ) И СПОСОБ ДЕТЕКТИРОВАНИЯ НАЛИЧИЯ АНАЛИТА В ЖИДКОМ ОБРАЗЦЕ 2011
  • Лоуэри Томас Джей
  • Ауде Марк Джон
  • Бланко Мэтью
  • Чепин Джеймс Франклин
  • Демас Василики
  • Дханда Рахул
  • Фрицемайер Мэрилин Ли
  • Кох Айзек
  • Кумар Сонья
  • Нили Лори Энн
  • Мозелески Брайан
  • Плаурд Даниэлла Линн
  • Риттершаус Чарльз Уильям
  • Уэллман Пэррис
RU2653451C2

Иллюстрации к изобретению RU 2 050 918 C1

Реферат патента 1995 года ТЕПЛОМАССООБМЕННЫЙ АППАРАТ ГАСПАКА-1

Изобретение относится к аппаратам для проведения тепломассообменных процессов в высококонцентрированных суспензиях в химической, фармацевтической, прищевой и других отраслях промышленности, связанных с обработкой твердых дисперсий растительного, животного, минерального и химического происхождения. Аппарат состоит из корпуса 1, разделенного вертикальной перегородкой 2, пульсационной камеры 3, соединенной через патрубок 4 с источником импульсов давления, бункера 5, штуцеров 6 и 7, устройства 8 для эвакуации твердой дисперсии с отводящим лотком 9, штуцера 10. Бункер 5 состоит из корпуса, люка 11, штуцеров 12 и 13, шнека питателя с приводом 14. 2 з. п. ф-лы, 2 ил.

Формула изобретения RU 2 050 918 C1

1.Тепломассообменный аппарат, состоящий из корпуса с рабочей зоной, выполненный в виде U-образного канала, штуцеров для подвода и отвода дисперсии и дисперсионной среды, штуцеров для подачи и стравливания пневматических импульсов давления, отличающийся тем, что он снабжен устройством для отвода твердой дисперсии, корпус снабжен вертикальной перегородкой, установленной с образованием U-образного канала с сечениями колен, отвечающими условию S1 ≅ S2, где S1 сечение приемного колена, S2 - отводного, при этом на верхнем глухом конце колена с меньшим сечением S1 размещены штуцеры подвода твердой дисперсии, отвода дисперсионной среды, подачи и стравливания пневматических импульсов давления, а на колене с большим сечением S2 устройство для отвода твердой дисперсии и штуцер подачи дисперсионной среды с установкой уровня нижнего среза устройства для отвода твердой дисперсии выше максимально допустимого уровня дисперсионной среды в этом колене. 2. Аппарат по п.1, отличающийся тем, что характерная величина импульса давления определяется уравнением

где в скобках обозначены средние значения заключенных в них величин;
ΔP избыточное давление в секции приемного колена диаметром D1;
v1 скорость в канале диаметром D1;
h2 и h1 средние уровни среды в отводящем втором и первом приемном каналах в начале и в конце ее движения;
D2 диаметр отводящего канала;
ρ и η плотность и вязкость среды;
d средний диаметр частиц;
λ = 1/[Co/C)1/2-1],
где Co≃ 0,75 максимальная концентрация твердой дисперсии.
3. Аппарат по п.1, отличающийся тем, что он снабжен бункером-смесителем для предварительного насыщения твердой дисперсии отводимым потоком дисперсионной среды, сообщенным с штуцерами для подвода твердой дисперсии и отвода дисперсионной среды.

Документы, цитированные в отчете о поиске Патент 1995 года RU2050918C1

Устройство для получения пресной воды из атмосферного воздуха в районах с высокой интенсивностью приливов и отливов 2023
  • Иванченко Александр Александрович
  • Евдулов Олег Викторович
  • Евдулов Владислав Олегович
RU2818324C1
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1

RU 2 050 918 C1

Авторы

Гурьянов Алексей Ильич

Сигал Павел Абрамович

Костерин Александр Васильевич

Гумеров Рафик Хафизович

Гильмутдинов Иль Гарафеевич

Зуев Юрий Алексеевич

Матросов Владимир Евгеньевич

Белякаев Юрий Владимирович

Бородулин Сергей Васильевич

Даты

1995-12-27Публикация

1993-12-09Подача