Изобретение относится к насосостроению, в частности к мембранным гидроприводным дозировочным насосам погружного исполнения, предназначенным для перекачивания агрессивных, токсичных и других жидкостей, в основном на подводно-технических средствах.
Известен мембранный гидроприводной дозировочный насос, в котором насосная и приводная камеры разделены мембраной, причем насосная камера снабжена всасывающим и нагнетательным клапанами, а приводная плунжером [1]
Недостатками такого насоса являются наличие отдельных от насоса привода плунжера и емкости рабочей жидкости с предохранительными и подпиточными клапанами. Это существенно увеличивает габариты и массу насоса, что делает его надежным даже при наличии двуплечного рычага, при различных давлениях под водой и естественно затрудняет его применение на подводно-технических средствах, для которых необходимы минимальные энергопотребление и габариты насоса с плавучестью, близкой к нулевой.
Известен также мембранный гидроприводной насос, содержащий корпус с установленным в нем мембранным разделителем с образованием насосной и приводной камер, цилиндр с подпружиненным плунжером и электромагнитным приводом, расположенными в корпусе в герметичной камере [2]
Недостатками этого насоса являются, во-первых, то, что он предназначен для перекачки горючего и не может надежно работать при перекачивании агрессивных сред, так как сам поршень находится в непосредственном контакте с агрессивной средой, и, во-вторых, неприспособленность его к работе в погруженном применении.
В основу изобретения поставлена задача создать мембранный гидроприводной насос для системы энергоснабжения подводных необитаемых глубоководных аппаратов с минимальными габаритами, массой и с минимальным потреблением энергии.
Поставленная задача решается тем, что мембранный гидроприводной насос, содержащий корпус с установленным в нем мембранным разделителем с образованием насосной и приводной камер, цилиндр с подпружиненным плунжером и электромагнитным приводом, расположенными в корпусе в герметичной камере, снабжен вторым мембранным разделителем и крышкой с образованием компенсационной камеры и камеры внешней среды, при этом в корпусе выполнены осевые отверстия для связи цилиндра с приводной и компенсационной камерами, а в крышке выполнено осевое отверстие для связи камеры внешней среды с источником внешней среды.
Приводная камера выполнена с отверстием, выполненным в корпусе, внешний выход которого герметизирован пробкой. В цилиндре со стороны компенсационной камеры установлены последовательно демпфирующая и регулировочная шайбы. В корпусе вокруг герметичной камеры выполнена камера электрических соединений, которая снабжена штуцером с гибким шлангом для выделения электрических проводов и заполнения камеры диэлектрической жидкостью. Приводная и компенсационная камеры выполнены герметизированными. Корпус насоса выполнен герметичным из электроизоляционного и коррозионностойкого материала с плотностью менее 1 кг/дм3 (например, синтактика).
На фиг. 1 представлен погружной мембранный гидроприводной насос, поперечный разрез; на фиг.2 то же, вариант.
Мембранный гидроприводной дозировочный насос содержит герметизированный корпус 1, снабженный с одной стороны насосной крышкой 2, а с другой стороны крышкой 3. Мембранный разделитель 4 образует в корпусе 1 насосную камеру 5 и приводную камеру 6, а второй мембранный разделитель 7 образует компенсационную камеру 8 и камеру 9 внешней среды. Между мембранными разделителями 4 и 7 в корпусе 1 установлена герметичная камера 10, в которую помещены герметизированный цилиндр 12, плунжер 13 с электромагнитным приводом 11, индуктор которого охватывает герметизированный цилиндр 12 с плунжером 13. Плунжер 13 подпружинен возвратной пружиной 14 со стороны приводной камеры 6. В цилиндре 12 со стороны компенсационной камеры 8 установлены эластичная демпфирующая шайба 15 для амортизации ударов плунжера, а также регулировочная шайба 16 для установки нужной величины его хода. Цилиндр 12 связан с приводной камерой 6 посредством рабочей жидкости через осевое отверстие 17. Компенсационная камера 8 связана с цилиндром 12 через осевое отверстие 18 в промежуточной крышке 19. Камера 9 внешней среды связана через осевое отверстие 20 в крышке 3 с внешней средой для обеспечения возвратно-поступательного движения плунжера 13 при работе в подводной среде. Вокруг герметичной камеры 10 выполнена камера 21 электрических соединений, которая снабжена штуцером 22 с уплотнением 23. Штуцер 22 предназначен для вывода проводов 24 из камеры 21 электрических соединений через гибкий шланг к системе управления электрическим приводом 11 и для заполнения самой камеры диэлектрической жидкостью. Приводная камера 6 снабжена системой заполнения этой камеры рабочей жидкостью в виде отверстия 25, один конец которого выведен непосредственно в камеру 6, а второй герметизирован пробкой 26 с уплотнителем 27. Насосная крышка 2 снабжена всасывающим клапаном 28, нагнетательным клапаном 29 и штуцерами 30 и 31 с уплотнениями 32 и 33, предназначенными для подсоединения к всасывающему и нагнетательному трубопроводам соответственно. Насосная крышка 2, крышка 3 и промежуточная крышка 19 герметизируются уплотнениями 34, 35 и 36. Камера 10 в корпусе 1 герметизируется уплотнениями 37 и 38.
При необходимости увеличения производительности насоса вместо крышки 3 может быть установлена насосная крышка (фиг.2).
Мембранный гидроприводной дозировочный насос работает следующим образом.
При подаче напряжения от системы управления на электромагнитный привод 11 плунжера 13 последний перемещается в цилиндре 12 в сторону приводной камеры 6, сжимая пружину 14 и рабочую жидкость в полости цилиндра 12. Под воздействием этого давления рабочая жидкость из полости цилиндра 12 через отверстие 17 перемещается в приводную камеру 6, воздействует на мембранный разделитель 4, выгибая его в объем насосной камеры 5. Перекачиваемая жидкость в насосной камере 5 сжижается и через невозвратный нагнетательный клапан 29 и штуцер 31 нагнетается в трубопровод (не показан). При движении плунжера 13 в указанном направлении в полости цилиндра 12 с обратной стороны плунжера 13 образуется область пониженного давления (вакуум), которая через отверстие 18 посредством рабочей жидкости связана с компенсационной камерой 8. Под давлением жидкости из окружающей среды (забортной воды) мембранный разделитель 7 выгибается в объем компенсационной камеры 8 и перемещает рабочую жидкость, находящуюся там, в цилиндре 12 через отверстие 18, обеспечивая тем самым беспрепятственное перемещение плунжера 13 в сторону приводной камеры 6.
При отключении электромагнитного привода 11 пружина 14 возвращает плунжер 13 в исходное положение. При этом ходе плунжера 13 в полости цилиндра 12 и приводной камере 6 образуется область пониженного давления и мембранный разделитель 4 выгибается в объем приводной камеры 6. В это время в насосной камере 5 также образуется область пониженного давления, под его воздействием открывается всасывающий клапан 28 и через штуцер 30 перекачиваемая жидкость из трубопровода поступает в объем насосной камеры 5. При этом ходе плунжер 13 одновременно перемещает рабочую жидкость через отверстие 18 в объем компенсационной камеры 8, создавая в нем область повышенного давления. Под воздействием этого давления мембранный разделитель 7 возвращается в исходное положение до выравнивания давления рабочей жидкости в компенсационной камере 8 и давления забортной воды в камере 9 внешней среды. Затем цикл повторяется.
название | год | авторы | номер документа |
---|---|---|---|
ПОГРУЖНОЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРИВОД ДЛЯ ИСПОЛНИТЕЛЬНЫХ УСТРОЙСТВ ПОДВОДНЫХ ТЕХНИЧЕСКИХ СРЕДСТВ | 1998 |
|
RU2140574C1 |
КАБЕЛЬНЫЙ НАКОНЕЧНИК | 1991 |
|
RU2020680C1 |
ПОГРУЖНОЙ ЭЛЕКТРОХИМИЧЕСКИЙ ГЕНЕРАТОР | 1992 |
|
RU2041533C1 |
ДИНАМИЧЕСКИЙ НАСОС (ВАРИАНТЫ) | 1999 |
|
RU2169295C2 |
СПОСОБ ОБНАРУЖЕНИЯ И ОТСЛЕЖИВАНИЯ ЭЛЕКТРОПРОВОДНОГО ПРОТЯЖЕННОГО ПОДВОДНОГО ОБЪЕКТА С БОРТА ПОДВОДНОЙ ПОИСКОВОЙ УСТАНОВКИ | 1998 |
|
RU2136020C1 |
ШИРОКОПОЛОСНЫЙ НИЗКОЧАСТОТНЫЙ ГИДРОАКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ | 1997 |
|
RU2136122C1 |
СОЕДИНЕНИЕ ГИБКОГО ШЛАНГА С ЖЕСТКИМ ЭЛЕМЕНТОМ | 1990 |
|
RU1750328C |
ВОДОНЕПРОНИЦАЕМЫЙ ГЛУБОКОВОДНЫЙ КОНТЕЙНЕР | 1994 |
|
RU2094293C1 |
ГИДРОАКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ | 1992 |
|
RU2029440C1 |
УСТРОЙСТВО ДЛЯ ПОДВЕСА ПОДВОДНОГО АППАРАТА К БУКСИРНОМУ КАБЕЛЬ-ТРОСУ | 2003 |
|
RU2240251C1 |
Использование: для перекачивания агрессивных токсичных жидкостей на подводно-технических средствах. Сущность изобретения: в корпусе установлен мембранный разделитель с образованием насосной и приводной камер. В герметичной камере корпуса расположены цилиндр с подпружиненным плунжером и электромагнитным приводом. Второй мембранный разделитель и крышка образуют компенсационную камеру и камеру внешней среды. В корпусе выполнены осевые отверстия для связи цилиндра с приводной и компенсационными камерами. В крышке выполнено осевое отверстие для связи камеры внешней среды с источником внешней среды. 6 з. п. ф-лы, 2 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Мембранный гидроприводной дозировочный насос | 1987 |
|
SU1448101A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Устройство для сортировки каменного угля | 1921 |
|
SU61A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Авторы
Даты
1996-03-20—Публикация
1992-01-03—Подача