ТРЕХКОМПОНЕНТНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ВИБРОАКСЕЛЕРОМЕТР С ОДНИМ ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ Российский патент 1996 года по МПК G01P15/08 G01H1/00 

Описание патента на изобретение RU2061242C1

Изобретение относится к измерительной технике, преимущественно к устройствам для измерения параметров вибрации различных машин и механизмов.

Известен пьезоэлектрический трехкомпонентный датчик виброускорений, содержащий один чувствительный элемент [1]
Этот датчик выполнен в форме куба с использованием двух независимых пьезомодулей пьезокерамики, и такое выполнение датчика обеспечивает снижение его инерционной массы и в результате общего веса и габаритов.

Принцип действия существующих до настоящего времени однокомпонентных пьезоэлектрических датчиков основан на измерении проекции вектора виброускорения на измерительную ось датчика. Для того, чтобы измерить величину и направление вектора виброускорения в заданной системе координат, используются трехкомпонентные виброакселерометры, которые имеют три чувствительных пьезоэлемента и, в лучшем случае, общую инерционную массу. Однако поскольку такие чувствительные элементы конструктивно разнесены в пространстве и не могут быть приведены к единой измерительной точке, то в точках крепления чувствительных элементов преобладают различные вибрации, к тому же заметно отличающиеся от тех действительных вибраций, которые измеряют, а данные, полученные по трем осям координат, не позволяют получить реальную величину и подлинное направление вектора ускорения.

Эта нежелательная ситуация обусловлена тем, что пьезоэлемент переводит одну механическую величину деформацию в одну электрическую заряды на двух противоположных плоских гранях. Однако пьезоэлектрические свойства кристаллов описываются тензором третьего ранга, имеющего в общем случае 18 независимых констант. С учетом симметрии кристалла, из которого изготовлен пьезоэлемент, можно одну деформацию, вызванную виброускорением, превратить в три взаимно перпендикулярных электрических сигнала, которыми являются три заряда на трех парах противоположных граней прямоугольного параллелепипеда.

Известен также трехкомпонентный пьезоэлектрический виброакселерометр с одним чувствительным элементом [2] содержащий пьезоэлемент, выполненный в форме прямоугольного параллелепипеда, который закреплен на базовом основании, при этом полярная ось пьезоэлемента перпендикулярна плоскости его крепления к базовому основанию, а матрица пьезомодулей выбрана вида 0 0 0 0 d15 0 0 0 0 d24 0 0 d31 d32 d33 0 0 0 где dij пьезомодуль (Кл/Н),
i индекс пьезоэлектрического поля,
j индекс деформации.

В этом устройстве все шесть граней пьезоэлемента покрыты тонким слоем металла, а между собой грани электрически разомкнуты. Пьезоэлемент жестко связан, в частности, может быть склеен с базовым основанием и инерционной массой, для того чтобы каждый из трех видов деформации: растяжение сжатие вдоль полярной оси Z, сдвиг в плоскости XZ, сдвиг в плоскости YZ, приводил к возникновению зарядов лишь на двух противоположных гранях прямоугольного параллелепипеда в соответствии с представленной выше матрицей пьезомодулей.

Эта матрица описывает пьезоэлектрические свойства кристаллов, относящихся к кристаллографическим классам С2v, C4v, C6v, C∞v, например, к классу С6v: монокристаллы CdS и ZnO, а к классу C∞v: пьезокерамика.

Цель изобретения повышение верхнего предела частотного диапазона, повышение точности измерений, уменьшение габаритов.

Это достигается тем, что в известном трехкомпонентном пьезоэлектрическом виброакселерометре с одним чувствительным элементом, содержащем пьезоэлемент, выполненный в форме прямоугольного параллелепипеда, который закреплен на базовом основании, при этом полярная ось пьезоэлемента перпендикулярна плоскости его крепления к базовому основанию, а матрица пьезомодулей выбрана вида
0 0 0 0 d15 0
0 0 0 d24 0 0
d31 d32 d33 0 0 0 где dij пьезомодуль (пьезоэлектрическая постоянная) (Кл/Н),
i индекс пьезоэлектрического поля,
j индекс деформации, прямоугольный параллелепипед выполнен из пьезокерамики или монокристалла с диэлектрической проницаемостью ε не менее 500 и с квадратным основанием, причем отношение высоты h прямоугольного параллелепипеда к длине b стороны квадратного основания выбрано из соотношения 0,3 < <h/b < 1,2.

Возможен вариант выполнения устройства, в котором целесообразно, чтобы h/b было выбрано равным 0,6.

На фиг. 1 представлено схематическое изображение трехкомпонентного пьезоэлектрического виброакселерометра с одним чувствительным элементом согласно изобретению; на фиг. 2 то же, при направлении вибрации вдоль оси Z; на фиг. 3 то же, при направлении вибрации вдоль оси Х; на фиг. 4 то же, при направлении вибрации вдоль оси Y.

Трехкомпонетный пьезоэлектрический виброакселерометр с одним чувствительным элементом (фиг. 1) содержит пьезоэлемент 1, выполненный в форме прямоугольного параллелепипеда, который закреплен на базовом основании 2. Полярная ось пьезоэлемента 1, параллельная оси Z, перпендикулярна плоскости его крепления к базовому основанию 2. Матрица пьезомодулей имеет вид 0 0 0 0 d15 0 0 0 0 d24 0 0 d31 d32 d33 0 0 0
Согласно изобретению прямоугольный параллелепипед (фиг. 1) выполнен из пьезокерамики или монокристалла с диэлектрической проницаемостью не менее 500 и с квадратным основанием, т.е. основание прямоугольного параллелепипеда представляет собой геометрический квадрат со стороной b. Отношение высоты h прямоугольного параллелепипеда к длине b стороны его квадратного основания выбрано из соотношения 0,3 < h/b < 1,2.

Возможен вариант выполнения устройства, в котором целесообразно, чтобы отношение h/b было выбрано равным 0,6.

Пьезоэлемент 1 выполнен с металлизацией на гранях (на фигурах не показанной), а на ребрах прямоугольного параллелепипеда металлизация отсутствует, чтобы грани были между собой электрически разомкнуты.

В отличие от известного устройства [2] из предложенной конструкции исключена инерционная масса 3. Для того, чтобы исключить инерционную массу 3 необходимо было определить область допустимых материалов и диапазон размеров прямоугольного параллелепипеда, позволяющих сохранить по крайней мере ту же точность и чувствительность измерений, что и для устройств, в которых на пьезоэлементе установлена инерционная масса при сохранении того же принципа функционирования. В результате был получен следующий результат: в определенном диапазоне отношений высоты h прямоугольного параллелепипеда к стороне b квадрата его основания при диэлектрической проницаемости ε материала пьезоэлемента 1 больше 500 удается повысить верхний предел измерений частотного диапазона и точность измерений.

Полярная ось, параллельная оси Z, (фиг. 1), например, вектор поляризации керамики перпендикулярен плоскости крепления к базовому основанию 2. Если вибрация направлена вдоль оси Z (фиг. 2), в кристалле возникает деформация растяжения-сжатия в том же направлении, а поскольку кристалл выбран с представленной матрицей пьезомодулей, то используется пьезомодуль d33, и заряды появляются лишь на гранях Z' прямоугольного параллелепипеда, перпендикулярных оси Z.

В случае вибрации в направлении оси Х (фиг. 3) в кристалле возникает деформация сдвига в плоскости XZ, при этом используется пьезомодуль d15, и заряды появляются лишь на гранях Х1.

При вибрации в направлении оси Y (фиг. 4) в кристалле возникает деформация cдвига YZ, и посредством пьезомодуля d24 заряды возникают лишь на гранях Y1. Так как в направлениях осей Х и Y невозможно создать деформацию растяжения-сжатия, то пьезомодули d31 и d32 не задействованы.

Таким образом, если вектор виброускорения имеет произвольную ориентацию в пространстве, то одновременное использование трех пьезомодулей d33, d15, d24 одного чувствительного элемента позволяет достоверно измерить его проекции на оси Х, Y, Z.

В идеальном случае матрица основных и поперечных чувствительностей в заданной системе координат должна иметь следующий вид (в процентах):
Вибрация
Пьезоэлек-
трическое Х У Z
поле
X 100 0 0
Y 0 100 0
Z 0 0 100
Однако реально поперечная чувствительность может достигать 50% и более, что приводит к значительному уменьшению точности определения виброускорения. Существенную роль в минимизации поперечной чувствительности играет выбор материала пьезоэлемента и его конфигурация, что было доказано многочисленными экспериментами. Далее приведены наиболее характерные примеры.

П р и м е р 1. Пьезоэлемент 1 изготовлен из монокристалла ZnO (симметрия С6v) в форме куба со стороной в 10 мм и диэлектрической проницаемостью ε 10. При таких размерах кристалла и диэлектрической проницаемости емкости противоположных пар граней оказываются меньше 1 пФ. Малые величины емкости явились причиной возникновения существенных наводок электрических сигналов на соседние грани пьезоэлемента 1 и в результате привели к поперечной чувствительности до уровня основной.

Как показали дальнейшие исследования и расчеты, материалы с низким значением диэлектрической проницаемости, а именно с ε < 500, непригодны для использования их без инерционной массы. Поэтому в настоящее время предпочтительнее использование керамики, что обусловлено высокими значениями диэлектрической проницаемости ( ε 800-2000). Высокие значения ε исключают наводки для различных габаритов и конфигурации пьезоэлемента 1. В то же время высокие значения пьезомодулей для керамики (d (150-300)x x10-12 Кл/Н) приводят к высоким величинам основных чувствительностей устройства.

Поскольку для пьезоэлемента 1, выполненного из керамики, для боковых пар граней dij и ε ij равны между собой: d15 d24, ε 11= ε 22 то наиболее оптимальной его конфигурацией является прямоугольный параллелепипед с основанием в виде квадрата.

Также при поиске новых материалов в изобретении могут быть использованы и монокристаллы с диэлектрической проницаемостью ε > 500.

П р и м е р 2. Исследованы четыре партии пьезоэлементов 1 из керамики состава ЦТС-19 (зарубежный аналог РZT 4) со стороной в основании квадрата 10 мм и с высотами h 2, 3, 4, 5 мм. Соответственно емкости боковых граней составляют: 20, 30, 40, 50 пФ.

Наводки из-за малой высоты h привели к тому, что в первом случае поперечные чувствительности составили 30-60, во втором 20-40, в третьем 18-25, в четвертом 12-20%
Поскольку значения поперечной чувствительности в третьем случае соответствуют ее типовым значениям, достигаемым в устройствах с использованием инерционной массы, то отношение высоты h прямоугольного параллелепипеда к стороне b его квадратного основания должно быть больше 0,3. Это минимальное значение h/b согласуется и с требованием к основной чувствительности, т.к. дальнейшее уменьшение массы керамики приводит к резкому сокращению диапазона измеряемых ускорений, т.к. масса керамики пьезоэлемента 1 (фиг. 1) при отсутствии инерционной массы выполняет функцию последней.

П р и м е р 3. Исследованы три партии пьезоэлементов 1 из керамики ЦТС-19. Первая партия выполнена в виде куба 10 х 10 х 10 мм без инерционной массы (h/b 1), вторая партия в виде прямоугольного параллелепипеда 10 х 10 х 12 мм без инерционной массы (h/b 1,2), третья партия в виде куба 10 х 10 х 10 мм с инерционной массой толщиной 2 мм (h/b 1,2).

В первом случае поперечные чувствительности составили 15-20, во втором 20-30, в третьем 20-30% Совпадение величин поперечных чувствительностей в третьем и втором случаях обусловлено заметным влиянием изгибных колебаний при одинаковой высоте.

Таким образом, использование пьезоэлементов 1 с соотношением n/b≥1,2 приводит к значительным погрешностям в определении достоверных значений вектора виброускорений. Но соображения, касающиеся поперечной чувствительности, не являются единственными: при n/b > 1,2 верхний предел частотного диапазона датчика понижается до 5 кГц и ниже.

П р и м е р 4. Исследованы пьезоэлементы 1 трех типов: 8 х 8 x 5 мм с толщиной инерционной массы 3 мм (h/b 1); 8 х 8 х 4 мм с толщиной инерционной массы 1 мм (h/b 0,6); 8 х 8 х 5 мм без инерционной массы. Получены следующие среднестатистические результаты, представленные в таблице.

Кроме того, исследованы пьезоэлементы 1 без инерционной массы в диапазоне h/b от 0,3 до 1,2 и установлено, что отношение h/b высоты прямоугольного параллелепипеда к стороне в квадрате его основания, равное 0,6, является оптимальным, а в диапазоне h/b от 0,3 до 1,2 устройства (фиг. 1) без инерционной массы имеют лучшие характеристики основной чувствительности, максимальной поперечной чувствительности и верхнего предела частотного диапазона, чем известные устройства.

Трехкомпонентный пьезоэлектрический виброакселерометр с одним чувствительным элементом может иметь широкое применение в технике стендовых и эксплуатационных измерений для различных областей машиностроения, особенно ракетного, авиационного и вертолетного, а также в научных целях.

Похожие патенты RU2061242C1

название год авторы номер документа
ТРЕХКОМПОНЕНТНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ВИБРОАКСЕЛЕРОМЕТР С ОДНИМ ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ 2002
  • Кобяков И.Б.
RU2229136C1
ВЕКТОРНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ВИБРОПРЕОБРАЗОВАТЕЛЬ 2007
  • Левитский Дмитрий Николаевич
  • Сперанский Анатолий Алексеевич
RU2347228C1
Пьезоэлектрический виброакселерометр 1974
  • Лукашин Юрий Васильевич
  • Кобяков Игорь Борисович
SU504940A1
МОНОКРИСТАЛЛИЧЕСКИЙ ПЬЕЗОЭЛЕМЕНТ РЕЗОНАНСНОГО ПРЕОБРАЗОВАТЕЛЯ 1996
  • Кобяков Игорь Борисович
RU2105432C1
Трёхкомпонентный пьезоэлектрический акселерометр 2024
  • Кирпичёв Александр Александрович
  • Новосёлов Михаил Юрьевич
  • Шубин Олег Леонидович
RU2817063C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ДАТЧИК УДАРА 2013
  • Каплунов Иван Александрович
  • Малышкина Ольга Витальевна
  • Головнин Владимир Алексеевич
  • Иноземцев Николай Владимирович
  • Дольников Геннадий Геннадьевич
RU2533539C1
ТРЕХКОМПОНЕНТНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ АКСЕЛЕРОМЕТР 1989
  • Вусевкер Ю.А.
  • Доля В.К.
  • Шевченко Л.А.
  • Веселова Е.Ю.
  • Дунаевский В.П.
  • Вуколов А.Н.
SU1679867A1
СПОСОБ ПОЛУЧЕНИЯ ПОРИСТОЙ ПЬЕЗОКЕРАМИКИ С АНИЗОТРОПИЕЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ И РЯДА ДРУГИХ ПАРАМЕТРОВ 2017
  • Сегалла Андрей Генрихович
  • Голова Людмила Викторовна
  • Нерсесов Сергей Суренович
  • Петров Павел Андреевич
  • Петрова Анастасия Александровна
  • Политова Екатерина Дмитриевна
  • Соколова Людмила Петровна
  • Соловьев Максим Анатольевич
  • Федулов Дмитрий Юрьевич
  • Ходько Ольга Николаевна
  • Чистякова Наталья Александровна
RU2673444C1
Пьезоэлектрический акселерометр 2016
  • Янчич Владимир Владимирович
  • Панич Анатолий Евгеньевич
RU2627571C1
ТРЕХКОМПОНЕНТНЫЙ ДАТЧИК МЕХАНИЧЕСКИХ КОЛЕБАНИЙ 2008
  • Захаров Константин Львович
  • Сперанский Анатолий Алексеевич
  • Калина Лариса Семеновна
RU2383025C1

Иллюстрации к изобретению RU 2 061 242 C1

Реферат патента 1996 года ТРЕХКОМПОНЕНТНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ВИБРОАКСЕЛЕРОМЕТР С ОДНИМ ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ

Использование: в измерительной технике. Сущность изобретения: с целью повышения верхнего предела частотного диапазона, повышения точности измерений, уменьшения габаритов, пьезоэлемент выполнен в форме прямоугольного параллелепипеда, который закреплен на базовом основании. Полярная ось пьезоэлемента перпендикулярна плоскости его крепления. Прямоугольный параллелепипед выполнен из пьезокерамики или монокристалла с диэлектрической проницаемостью ε > 500 и с квадратным основанием. Отношение высоты h прямоугольного параллелепипеда к длине b стороны квадрата выбрано из соотношения 0,3<h /b< 1,2. Матрица пьезомодулей выбрана вида
o o o o d15 o
o o o d24 o o
d31 d32 d33 o o o.

1 з. п. ф-лы. 1 табл. 4 ил.

Формула изобретения RU 2 061 242 C1

1. Трехкомпонентный пьезоэлектрический виброакселерометр с одним чувствительным элементом, содержащий пьезоэлемент, выполненный в форме прямоугольного параллелепипеда, который закреплен на базовом основании, при этом полярная ось пьезоэлемента перпендикулярна к плоскости его крепления к базовому основанию, а матрица пьезомодулей выбрана вида
О О О О d15 О
О О О d24 О О
d31 d32 d33 О О О
где dij пьезомодуль, Кл/Н;
i индекс пьезоэлектрического поля;
j индекс деформации,
отличающийся тем, что прямоугольный параллелепипед выполнен из пьезокерамики или монокристалла с диэлектрической проницаемостью ε не менее 500 и с квадратным основанием, причем отношение высоты h прямоугольного параллелепипеда к длине b стороны квадратного основания выбрано из соотношения 0,3 < h / b < 1,2.
2. Виброакселерометр по п. 1, отличающийся тем, что h / b равно 0,6.

Документы, цитированные в отчете о поиске Патент 1996 года RU2061242C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Пьезоэлектрический трехкомпонентный датчик виброускорений 1959
  • Кобяков И.Б.
  • Лукашин Ю.В.
SU129351A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Пьезоэлектрический виброакселерометр 1974
  • Лукашин Юрий Васильевич
  • Кобяков Игорь Борисович
SU504940A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 061 242 C1

Авторы

Кобяков Игорь Борисович

Даты

1996-05-27Публикация

1994-05-27Подача