СПОСОБ ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ ОТЛОЖЕНИЙ И КОРРОЗИИ Российский патент 1996 года по МПК C02F5/08 C02F1/48 

Описание патента на изобретение RU2065409C1

Изобретение относится к способам предотвращения отложений минеральных солей и коррозии оборудования в водных растворах и может быть использовано в области водоподготовки при создании замкнутых и бессточных систем водоснабжения.

Известен способ предотвращения отложений путем обработки воды в магнитном поле при оптимальной напряженности поля и скорости потока [1]
Однако, этот способ имеет ряд недостатков: магнитная обработка эффективна при определенном солевом составе воды определенной карбонатной кальциевой жесткости. В случае сульфатной жесткости этот способ не дает положительных результатов. Отрицательно влияет на эффект магнитной обработки наличие в воде большой концентрации диоксида углерода, наличие других растворенных и нерастворенных примесей. Все эти факторы оказывают значительное влияние на эффективность магнитной обработки, приводят к частым перенастройкам магнитных аппаратов вследствие изменения качества воды. Кроме того, магнитная обработка практически не влияет на изменение коррозионных свойств воды.

Наиболее близким к предлагаемому является способ предотвращения отложений и коррозии путем введения в обрабатываемую воду водных растворов комплексонов, содержащих аминоалкилфосфоновые группы или их моноядерных комплексонатов цинка [2]
Известный способ недостаточно эффективен в замкнутых и бессточных системах водоснабжения по следующим причинам:
карбонатная жесткость, при которой возможно применение комплексонов, ограничено 7 мг-экв/л;
ингибирование коррозии фосфорсодержащими комплексонами недостаточно и не превышает 30% При использовании моноядерных комплексонатов цинка эффективность ингибирования коррозии повышает до 90-95% однако, расход реагента составляет 30-50 мг/л;
при использовании фосфорсодержащих комплексонов в бессточной системе водоснабжения они недостаточно эффективны из-за разрушения биоорганизмами. Для сохранения эффективности их необходимо использовать совместно с медьаммонийным комплексом оксиэтилендифосфоновой кислоты, что удорожает обработку воды.

разбавленные (1-5% ) растворы фосфорсодержащих комплексонов необходимо готовить на технической воде. Использование оборотной воды с высокой жесткостью (10 мг-экв/л) невозможно, т.к. при приготовлении растворов на такой воде образуются малорастворимые кальциевые соли, выпадающие в осадок, при этом снижается эффективность обработки воды.

Техническая задача изобретения повышение эффективности обработки воды при одновременном снижении расхода реагентов в замкнутых и бессточных системах водоснабжения.

Поставленная задача решается тем, что водные растворы органофосфонатов и их моноядерных комплексонатов растворяют и приготовляют в магнитном поле в течении 1-10 мин.

При приготовлении ингибиторов в магнитном поле создаются условия для активной ассоциации ионов, флуктуации их концентраций и нарушение гидратных оболочек ионов. В результате этих процессов повышается эффективность действия реагентов при их использовании в замкнутых и бессточных системах водоснабжения.

В качестве органофосфонатов используют следующие соединения:
оксиэтилидендифосфоновая кислота ОЭДФ (ТУ 6-09-20-13-78)

нитрилтриметиленфосфоновая кислота НТФ (ТУ 6-09-20-13-78)

2-гидрокси-1,3-пропилендиаминтетраметиленфосфоновая кислота ДПФ (ТУ 6-09-4915-80)

ИОМС ингибитор отложений минеральных солей, представляющий собой композицию, содержащую нитрилтриметиленфосфоновую, иминобисметилфосфоновую, полиэтиленполиаминополиметиленфосфоновую кислоты, выпускаемый согласно ТУ 6-05-21-1153-81.

Сравнительная характеристика эффективности предлагаемого и известных способов приведена в таблице 1.

Примеры выполнения способа.

Пример 1. Водный 5%-ный раствор оксиэтилендифосфоновой кислоты (ОЭДФ), готовят растворением в воде в магнитном поле при напряженности магнитного поля 1700 Э и скорости течения жидкости 0,6 м/с. Для приготовления раствора использован магнитный аппарат "Казмеханобр". Время обработки раствора 0,5-15 мин. Полученные растворы были испытаны в качестве ингибиторов солеотложений при кристаллизации карбоната кальция.

Раствор бикарбоната кальция готовят смешиванием эквивалентных количеств бикарбоната натрия и хлористого кальция. Концентрация полученного раствора 10 мг-экв/л. Пересыщенный раствор сульфата кальция готовят смешением эквивалентных количеств сульфата натрия и хлористого кальция. Концентрация сульфата кальция 7,5 г/л. Опыты проведены при перемешивании (Rе ц=12500) и температуре 60±0,1oС. Полученные растворы реагента были использованы в виде 0,1% -ных растворов. Концентрация реагента в исследуемом растворе 5 мг/л. Эффективность была оценена по продолжительности периода индукции, определяемого по результатам химического анализа графическим методом. Данные приведены в таблице 2.

Из данных, представленных в таблице 2 видно, что в тех случаях, когда приготовление реагента проведено в магнитном поле, индукционный период кристаллизации увеличился на 20-100% Оптимальными условиями обработки является время от 1 до 10 мин. Уменьшение или увеличение указанного времени обработки не позволяет достичь заявляемого технического результата.

Пример 2. Получение моноядерного комплексоната в магнитном поле при напряженности поля 1700 Э и скорости течения жидкости 0,6 м/с. Раствор сульфата цинка (5%) обработан раствором щелочи (40%) до достижения рН среды 9. В образовавшуюся суспензию, представляющую собой гидроокись цинка, постепенно вводят 25%-ный раствор нитрилтриметиленфосфоновой кислоты (НТФ) или ингибитор отложений минеральных солей (ИОМС) до получения гомогенного раствора. Обработка в магнитном поле проведена в течение 0,5-15 мин. Приготовленные растворы испытаны в качестве ингибиторов коррозии на воде следующего химического состава: рН 9,5, щелочность 0,7 мг-экв/л, жесткость 2,5 мг-экв/л, солесодержание 230 мг/л, железо (общее) 8,0 мг/л, сульфаты 45 мг/л, хлориды 80 мг/л.

Скорость коррозии конструкционной стали определена на коррозиометре "Ока" по известной методике. Данные представлены в таблице 3.

Из данных, представленных в табл.3, видно, что в случае приготовления моноядерного комплексоната цинка в магнитном поле возможно не только повысить эффективность ингибирования коррозии, но и снизить концентрацию комплексоната в 6 10 раз. Это позволяет сократить расход реагента, особенно в случае использования его в открытых системах. Оптимальное время обработки 1-10 минут.

Пример 3. Водные растворы комплексонатов были приготовлены в магнитном поле напряженностью 1700 Э при скорости потока 0,6 м/с. Время обработки в магнитном поле 5 мин. Растворы термостатированы при 40oС в течение 60 суток. Один раз в 20 суток определяли влияние приготовленных растворов на кристаллизацию сульфата кальция. Пересыщенный раствор сульфата кальция исходной концентрации 8 г/л готовят смешением эквивалентных количеств сульфата натрия и хлористого кальция. Эффективность реагентов проверена при 80oС и времени выдержки 3 часа. Концентрация реагентов 5 мг/л. При аналогичных условиях испытаны смеси НТФ с медьаммонийным комплексом оксиэтилидендифосфоновой кислоты (МДФК) при оптимальном соотношении. Данные приведены в таблице 4.

Как видно из данных, представленных в табл.4, обработка раствора комплексона в магнитном поле позволяет отказаться от использования в составе композиции МДФК, применение которой существенно повышает стоимость обработки воды. По сравнению с реагентами, не обработанными в магнитном поле, эффективность заявляемого способа выше более чем на 60%
Пример 4. Приготовление водных 1-2% растворов комплексонов проводили на воде с общей жесткостью 15 мг-экв/л в магнитном поле напряженностью 1700 Э при скорости потока 0,6 м/с в течение 10 минут и без него. Потери реагентов в результате образования осадков, представляющие собой полиядерные комплексонаты кальция, определяли по изменению концентрации комплексонов в растворе по стандартной методике и визуально.

Данные представлены в таблице 5.

Из данных, приведенных в таблице 5, видно, что в случае приготовления растворов реагента в магнитном поле его потери, практически, равны нулю. Если же приготовление реагентов проводят не в магнитном поле, потери составляют 27-35%
Таким образом, технико-экономические преимущества способа заключаются в повышении эффективности обработки воды с целью предотвращения образования отложений и коррозии, расширение возможности использования комплексонов в бессточных системах водоснабжения, сокращения расхода реагентов при ингибировании коррозии, приготовлении растворов на водах высокой минерализации. ТТТ1 ТТТ2 ТТТ3 ТТТ4

Похожие патенты RU2065409C1

название год авторы номер документа
СОСТАВ ДЛЯ ПРЕДОТВРАЩЕНИЯ ОТЛОЖЕНИЙ И КОРРОЗИИ 1993
  • Дрикер Б.Н.
  • Аронов М.С.
  • Табуев А.В.
  • Мешков В.В.
RU2065410C1
СОСТАВ ДЛЯ УДАЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ МИНЕРАЛЬНЫХ СОЛЕОТЛОЖЕНИЙ С ТЕПЛОЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ 2000
  • Дрикер Б.Н.
  • Аронов М.С.
  • Хромцова А.З.
  • Цирульникова Н.В.
  • Ваньков А.Л.
RU2177458C1
Способ предотвращения коррозии металла в водных растворах 2021
  • Дрикер Борис Нутович
  • Цирульникова Нина Владимировна
  • Протазанов Афанасий Андреевич
  • Стягов Николай Николаевич
  • Линников Олег Дмитриевич
  • Акашев Лев Александрович
RU2775595C1
Способ предотвращения коррозии металла в водных растворах 2021
  • Дрикер Борис Нутович
  • Цирульникова Нина Владимировна
  • Протазанов Афанасий Андреевич
  • Стягов Николай Николаевич
  • Линников Олег Дмитриевич
  • Акашев Лев Александрович
RU2784714C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ СОЛЕОТЛОЖЕНИЙ И БИООБРАСТАНИЙ В СИСТЕМАХ ВОДОСНАБЖЕНИЯ 1998
  • Дрикер Б.Н.
  • Галкин Ю.А.
  • Ваньков А.Л.
  • Савицкий М.А.
RU2133229C1
СПОСОБ ПРЕДОТВРАЩЕНИЯ СОЛЕОТЛОЖЕНИЙ И КОРРОЗИИ В СИСТЕМАХ ВОДОСНАБЖЕНИЯ 2011
  • Дрикер Борис Нутович
  • Тарасова Светлана Анатольевна
  • Тарантаев Александр Георгиевич
  • Обожин Андрей Николаевич
RU2486138C2
1,4-Бис[3-Окси-2-гидроксиаминобис(фосфонометил)пропил]бензол в качестве ингибитора солеотложений и коррозии металла 1991
  • Цирульникова Нина Владимировна
  • Карандеева Ирина Владимировна
  • Дрикер Борис Нутович
  • Дятлова Нина Михайловна
SU1799873A1
СПОСОБ ПРЕДОТВРАЩЕНИЯ СОЛЕОТЛОЖЕНИЙ И КОРРОЗИИ В СИСТЕМАХ ВОДОСНАБЖЕНИЯ И ОТОПЛЕНИЯ 2006
  • Дрикер Борис Нутович
  • Сикорский Иван Павлович
  • Цирульникова Нина Владимировна
  • Тарантаев Александр Борисович
RU2328453C1
СОСТАВ ДЛЯ УДАЛЕНИЯ МИНЕРАЛЬНЫХ ОТЛОЖЕНИЙ 2013
  • Дрикер Борис Нутович
  • Микрюков Андрей Владимирович
  • Гарифуллин Дамир Шамильевич
  • Тарантаев Александр Георгиевич
  • Первова Инна Геннадьевна
  • Балакин Вячеслав Михайлович
RU2544664C2
СПОСОБ ПРЕДОТВРАЩЕНИЯ СОЛЕОТЛОЖЕНИЙ И КОРРОЗИИ В СИСТЕМАХ ВОДОСНАБЖЕНИЯ 2011
  • Дрикер Борис Нутович
  • Тарасова Светлана Анатольевна
  • Тарантаев Александр Георгиевич
  • Обожин Андрей Николаевич
RU2486139C2

Иллюстрации к изобретению RU 2 065 409 C1

Реферат патента 1996 года СПОСОБ ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ ОТЛОЖЕНИЙ И КОРРОЗИИ

Использование: предотвращение образования отложений и коррозии при создании замкнутых и бессточных систем водоснабжения. Сущность изобретения: способ включает растворение фосфонсодержащих комплексонатов в воде и введение полученного раствора и обрабатываемую воду, при этом растворы комплексонатов и комплексонов готовят в магнитном поле в течение 1-10 мин. 1 с.п. ф-лы, 4 прим., 5 табл.

Формула изобретения RU 2 065 409 C1

Способ предотвращения образования отложений и коррозии путем введения в обрабатываемую воду растворов фосфонсодержащих комплексонов, отличающийся тем, что растворы комплексонов и комплексонатов металлов готовят в магнитном поле в течение 1 10 мин.

Документы, цитированные в отчете о поиске Патент 1996 года RU2065409C1

Классен В.И
Омагничивание водных систем.- М.: Химия, 1978, c
Ручная тележка для грузов, превращаемая в сани 1920
  • Туркин Н.И.
SU238A1
Дятлова Н.М., Темкина В.Я., Попов К.И
Комплексоны и комплексонаты металлов.- М.: Химия, 1988, с
Стрелочный замыкатель 1922
  • Потресов А.П.
SU544A1

RU 2 065 409 C1

Авторы

Дрикер Б.Н.

Аронов М.С.

Табуев А.В.

Федичкин А.А.

Даты

1996-08-20Публикация

1993-04-12Подача