СПОСОБ ЭКСПЛУАТАЦИИ СИСТЕМЫ ГАЗЛИФТНЫХ СКВАЖИН Российский патент 1996 года по МПК E21B43/00 

Описание патента на изобретение RU2066738C1

Изобретение относится к нефтедобывающей промышленности, а именно к добыче нефти из газлифтных скважин.

Известен способ эксплуатации системы газлифтных скважин РД 39-2-885-82 "Методика выбора режимов работы газлифтных скважин в условиях дефицита рабочего агента", при котором расход газа для каждой газлифтной скважины определяется исходя из ее характеристической кривой (зависимости дебита жидкости от расхода газа), описываемой (аппроксимируемой) одним полиномом 2 степени на всем диапазоне изменений расхода газа, а также по зависимостям других оптимизируемых скважин и суммарного ресурса газа высокого давления с использованием метода многожителей Лагранжа.

Прототипом предлагаемого изобретения является способ эксплуатации системы газлифтных скважин (авторское свидетельство СССР N 1700208), включающий закачку рабочего агента, измерение параметров работы каждой скважины, построение зависимостей дебита от расхода рабочего агента, регистрацию при этом динамики изменения давления рабочего агента на устье скважины, определение оптимальных расходов рабочего агента из условия равенства по всем скважинам значений показателей эффективности использования газа (отношение изменения дебита к изменению расхода газа), переход на новый режим одновременно по всем скважинам, сопоставление замеренных параметров с расчетными данными и повторение операции перехода при их рассогласовании до момента достижения оптимальной работы системы.

Недостатком этих способов является большая погрешность аппроксимации одним полиномом 2 степени, особенно при дефиците газа, когда эксплуатация скважин осуществляется на пусковых клапанах, что приводит к неправильному выбору оптимальных режимов системы скважин.

Цель изобретения повышение эффективности способа при ограниченном ресурсе газа за счет повышения точности выбора оптимального режима работы скважин. Экономический эффект выражается в повышении суммарной добычи нефти и уменьшении удельного расхода газа за счет уточнения зависимости дебита жидкости от расхода газа (уточнение первичной информации и обоснованность качества аппроксимации), а также в повышении оперативности проведения процедуры оптимизации за счет сокращения времени исследования скважин.

Указанная цель достигается за счет следующих технических решений.

1. На каждой скважине на каждом режиме (расходе газа) при фиксированном стабильном значении рабочего давления газа и текущей обводненности измеряют более одного раза дебит жидкости, по совокупности измеренных дебитов определяют относительную погрешность измерения.

2. Повторяют процедуру на различных режимах для всех скважин, подключенных к данной замерной установке, и по совокупности экспериментальных данных определяют зависимость погрешности замеров от дебита жидкости, газо- и водосодержания продукции, затем аппроксимируют зависимость дебита жидкости от расхода газа при соблюдении требования непревышения погрешности аппроксимации над погрешностью измерения для данной конкретной скважины при данном режиме; по полученным зависимостям определяют и устанавливают оптимальные технологические режимы.

3. При аппроксимации для каждого замера устанавливают свой вес, причем значение веса выбирают обратно пропорционально погрешности измерения на данном режиме.

4. Выбирают количество замеров и их продолжительность в зависимости от погрешности на предыдущих замерах.

5. При построении зависимости погрешности от влияющих на нее факторов не включают замер, если относительная погрешность измерений на данном режиме вдвое превышает среднюю для данного типа установок при одинаковых значениях параметров, влияющих на измерения (дебит жидкости, газо- и водосодержание).

6. Производят аппроксимацию зависимости дебита жидкости от расхода газа кусками парабол, причем каждый последующий кусок, соответствующий большему расходу газа, имеет меньшее значение отношения изменения дебита жидкости к изменению расхода газа, при этом границы кусков выбирают на основе скачков рабочего давления газа, а количество кусков парабол аппроксимирующей кривой оказывается больше количества точек ввода газа.

7. Производят тарировку (настройку) данной замерной установки при увеличении ее погрешности выше средней для данного типа установок при одинаковых значениях параметров, влияющих на измерения (дебит жидкости, газо- и водосодержание).

8. Выбирают момент достижения оптимальной работы системы скважин из требования непревышения максимальной абсолютной погрешности замеряемых дебитов из рассматриваемой группы скважин над разницей суммарной добычи по этой группе скважин между предыдущим и последующим этапом оптимизации.

9. Принимают значение рабочего давления газа стабильным при отклонении максимального значения рабочего давления от минимального во время измерения не более чем на 10%
10. При периодическом изменении параметров работы скважины время замера дебита жидкости устанавливают кратным периоду изменения этих параметров.

Способ реализуется следующим образом.

На первом этапе для каждой замерной установки из рассматриваемой системы для определенного промежутка времени (месяц квартал) выявляют зависимость погрешности замерной установки от различных факторов, влияющих на эту погрешность. Как известно, основными факторами, влияющими на случайную погрешность, являются абсолютное значение расходных характеристик измеряемого потока (дебит жидкости и смеси) и его физико-химические свойства (в т.ч. газо- и водосодержание).

На практике это осуществляют следующим образом. На каждой скважине на каждом режиме (на каждом расходе газа) при фиксированном стабильном значении рабочего давления газа и текущей обводненности несколько раз получают краткосрочные замеры дебита жидкости (непрерывно снимая показания расходомера (ТОРа) через промежутки, минимально допустимые для существующей технической системы и системы автоматизации измерений). Затем, получив экспериментальные значения дебита жидкости на данном режиме (при фиксированных значениях устьевых давлений, расходе инжектируемого газа, существующей обводненности), определяют статистические характеристики измеряемой величины, прежде всего средневзвешенное арифметическое (которое в дальнейшем считают измерением на данном режиме), относительные погрешности исходных измерений, доверительный интервал, который определяет относительную погрешность этого средневзвешенного измерения. В частности, значение рабочего давления газа принимают стабильным, если отклонение максимального значения рабочего давления от минимального во время измерения дебита жидкости не превышает 10% Причем каждому такому исследовательскому замеру устанавливают свой весовой коэффициент (вес замера) в зависимости от общей продолжительности измерения на данном режиме, степени совпадения каждого последующего замера дебита жидкости (Qжi) с предыдущимQж(i-1)} на данном режиме, степени совпадения замеров дебита жидкости при прямой (Qжп) и обратной (Qжо) прогонке (при увеличении и уменьшении расхода газа).

Например, может использоваться следующая формула для определения веса замера:
W (1 + a/(1+D))b*t/(1+c*d),
где a, b, c фиксированные коэффициенты, D относительная погрешность замера, например Qжi/Qж(i-1), t продолжительность замера, d степень совпадения замеров при прямой и обратной прогонке, например1 - Qжп/Qжо!
Заметим, что при превышении относительной погрешности измерений на данном режиме относительно удвоенной средней для данного типа установок при одинаковых значениях параметров, влияющих на измерения (дебит жидкости, газо- и водосодержание), данный замер не учитывают при построении зависимости погрешности от влияющих на нее факторов.

Далее на основе замеров на различных режимах и для различных скважин, подключенных к данному замерному устройству, путем аппроксимации строят модель зависимости погрешности замерного устройства от факторов, на нее влияющих (на практике целесообразно использовать зависимость от трех параметров). Исследовательские замеры, полученные по указанной выше процедуре после построения модели, но в течение данного промежутка времени, адаптивно уточняют эту модель.

На втором этапе для каждой скважины, участвующей в процессе оптимизации, строят характеристическую кривую (зависимость дебита жидкости от расхода газа).

На практике это делают следующим образом. Дополнительно к полученным на первом этапе исследовательским замерам измеряют дебит жидкости при различных расходах газа с одновременной регистрацией рабочего давления таким образом, чтобы общее количество замеров между скачкообразным изменением рабочего давления было не меньше трех (зависимость рабочего давления от расхода газа не является монотонной, что связано с изменением глубины точки и/или количества точек инжекции ввода газа). Это делают для того, чтобы более обосновано выбрать зоны (в частном случае точки) перехода от одного клапана к другому, то есть от кривой, описывающей работу на одном клапане, к кривой, описывающей работу другого клапана. В общем случае всю совокупность замеров аппроксимируют кусками парабол второго порядка. Основными требованиями при аппроксимации зависимости дебита жидкости от расхода газа являются уменьшение значений отношения изменения дебита жидкости к изменению расхода газа при переходе от кусков парабол с меньшим расходом газа к кускам с большим значением расхода газа; условие непревышения погрешности аппроксимации над погрешностью измерения для данной конкретной скважины при исследуемых режимах.

При периодическом изменении параметров работы скважины время замера дебита жидкости устанавливают кратным периоду изменения этих параметров.

На третьем этапе по полученным зависимостям для всех оптимизируемых скважин определяют и устанавливают новые технологические режимы, например, согласно прототипу на основе равенства показателей эффективности использования газа (отношений изменения добычи нефти к изменению расхода газа), которые можно считать оптимальными для данного набора измерений и построенной модели.

На четвертом этапе по каждой скважине на вновь установленных режимах получают дополнительные замеры, по которым уточняют характеристическую кривую (см. второй этап), в т.ч. возможно изменение или появление новых участков сплайна, описываемых разными параболами. При этом возможно проведение исследовательских замеров (первый этап) и, следовательно, уточнение модели погрешностей. Далее по уточненной информации устанавливают новые оптимальные режимы.

Такую процедуру оптимизации можно повторять несколько раз. При этом процесс уточнения и оптимизации следует прекращать, если разность между суммарным дебитом жидкости на текущих и предыдущих технологических режимах оказывается меньше максимальной абсолютной погрешности дебита жидкости по оптимизируемой группе скважин, определяемой из модели погрешностей.

Рассмотрим реализацию способа на примере трех газлифтных скважин, подключенных к одной замерной установке.

Результаты измерений по скважинам 12088, 13126 и 14337 куста 1092 с замерной установкой типа "Спутник" Самотлорского месторождения и соответствующие им погрешности приведены в Приложении в таблицах 1, 2, 3. По статистическим данным исследования различных режимов всех газлифтных скважин, подключенных к данной замерной установке, получена следующая регрессионная формула для ее погрешности в зависимости от дебита жидкости (Q) и удельного газосодержания (удельный расход газа R):
D 1000/Q + 0,03 R.

На основе этой модели для технологических режимов, на которых не было произведено углубленных исследований с целью определения относительной погрешности, эта величина была подсчитана (модельная погрешность замера) исходя из заранее полученных статистических зависимостей погрешности дебита жидкости.

Как видно из таблицы 1, погрешность аппроксимации как для одной (общей) характеристической кривой, так и для характеристической кривой, состоящей из двух кусков, значительно меньше погрешности измерения. Поэтому характеристическая кривая по этой скважине с достаточной точностью (по сравнению с измерением) описывается одним полиномом второй степени.

Для двух других скважин (см. таблицы 2 и 3) погрешность аппроксимации одним полиномом больше, чем погрешность измерения, и поэтому необходимо улучшить по ним аппроксимацию замеренных данных. Это можно сделать с помощью двух (или более) кусков парабол.

В таблице 4 приведены результаты оптимизации по 3 газлифтным скважинам на основе традиционной схемы и с помощью предлагаемого технического решения.

Как видно из таблицы, несмотря на то, что расчетный дебит при оптимизации по существующему способу больше, чем по предлагаемому из-за ошибки аппроксимации, но фактический дебит по предлагаемому способу по группе из трех скважин больше на 9 м3/сут.

Эффект усилится при большем дефиците газа и оптимизации с отключением скважин.

Похожие патенты RU2066738C1

название год авторы номер документа
СПОСОБ ЭКСПЛУАТАЦИИ ГАЗЛИФТНОГО КОМПЛЕКСА 1992
  • Леонов В.А.
  • Никишин В.А.
  • Башин В.А.
  • Борисов В.А.
  • Макеев О.И.
RU2067161C1
СПОСОБ ЭКСПЛУАТАЦИИ СИСТЕМЫ ГАЗЛИФТНЫХ СКВАЖИН 1991
  • Леонов В.А.
  • Вайгель А.А.
  • Шарифуллин Ф.А.
  • Матвеев К.Л.
  • Гуменюк В.А.
RU2017942C1
Способ эксплуатации системы газлифтных скважин 1989
  • Шарифов Махир Зафар Оглы
  • Леонов Василий Александрович
SU1691659A1
Способ эксплуатации системы газлифтных скважин 1988
  • Леонов Василий Александрович
  • Соколов Алексей Николаевич
SU1700208A1
СПОСОБ ЭКСПЛУАТАЦИИ КОМБИНИРОВАННОЙ УСТАНОВКИ "ГАЗЛИФТ-ПОГРУЖНОЙ НАСОС" 1992
  • Леонов В.А.
  • Сальманов Р.Г.
  • Прохоров Н.Н.
  • Таюшев А.В.
  • Грехов В.В.
  • Фонин П.Н.
RU2068492C1
Способ определения режима работы системы газлифтных скважин 1991
  • Шарифов Махир Зафар Оглы
  • Леонов Василий Александрович
  • Тарабрин Владимир Васильевич
  • Шишотова Ольга Васильевна
SU1794179A3
СПОСОБ ЭКСПЛУАТАЦИИ СИСТЕМЫ ГАЗЛИФТНЫХ СКВАЖИН 1989
  • Леонов В.А.
SU1708020A1
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Леонов В.А.
  • Шарифов М.З.
  • Елин Н.Н.
  • Леонова Л.В.
RU2013538C1
СПОСОБ ЭКСПЛУАТАЦИИ СИСТЕМЫ ГАЗЛИФТНЫХ СКВАЖИН 1989
  • Леонов В.А.
  • Елин Н.Н.
SU1630367A1
Способ эксплуатации системы газлифтных скважин 1991
  • Шарифов Махир Зафар Оглы
  • Леонов Василий Александрович
SU1800004A1

Иллюстрации к изобретению RU 2 066 738 C1

Реферат патента 1996 года СПОСОБ ЭКСПЛУАТАЦИИ СИСТЕМЫ ГАЗЛИФТНЫХ СКВАЖИН

Изобретение относится к нефтедобывающей промышленности, а именно к добыче нефти из газлифтных скважин. Для повышения эффективности способа за счет повышения точности выбора оптимального режима работы скважин путем уточнения зависимости дебита жидкости от расхода газа способ эксплуатации системы газлифтных скважин включает измерение параметров работы каждой скважины, построение зависимостей дебита от расхода рабочего агента, определение оптимальных расходов рабочего агента, переход на новый режим по скважинам, сопоставление замеренных параметров с расчетными данными и повторение операции перехода при их рассогласовании до момента достижения оптимальной работы системы. На каждой скважине на каждом режиме (на каждом расходе газа) при фиксированном значении рабочего давления газа и текущей обводненности измеряют более одного раза дебит жидкости, по совокупности измеренных дебитов определяют относительную погрешность измерения, повторяют процедуру на различных режимах для всех скважин, подключенных к данной замерной установке, по совокупности экспериментальных данных определяют зависимость погрешности замеров от дебита жидкости, газо- и водосодержания продукции, аппроксимируют зависимость дебита жидкости от расхода газа при соблюдении требования непревышения погрешности аппроксимации над погрешностью измерения для данной конкретной скважины при данных режимах, по полученным зависимостям определяют и устанавливают оптимальные технологические режимы. При аппроксимации для каждого замера может быть установлен свой вес, причем значение веса выбирается обратно пропорционально погрешности измерения на данном режиме. Количество замеров и их продолжительность могут выбираться в зависимости от погрешности на предыдущих замерах. При превышении относительной погрешности измерений на данном режиме относительно удвоенной средней для данного типа установок при одинаковых значениях параметров, влияющих на измерения (дебит жидкости, газо- и водосодержание), данный режим может не учитываться при построении зависимости погрешности от влияющих на нее факторов. Аппроксимация зависимости дебита жидкости от расхода газа может производиться кусками парабол второго порядка, причем каждый последующий кусок, соответствующий большему расходу газа, должен иметь меньшее значение отношения изменения дебита жидкости к изменению расхода газа, при этом границы кусков можно выбирать на основе скачков рабочего давления газа, а количество точек ввода газа оказывается не менее количества кусков парабол аппроксимирующей кривой. При увеличении погрешности замерного устройства выше средней для данного типа установок при одинаковых значениях параметров, влияющих на измерения (дебит жидкости, газо- и водосодержание), может быть произведена тарировка (надстройка) данной замерной установки. Момент достижения оптимальной работы системы скважин можно выбирать из требования непревышения максимальной абсолютной погрешности дебита из рассматриваемой группы скважин над разницей суммарной добычи по этой группе скважин между предыдущим и последующим этапом оптимизации. Значение рабочего давления газа можно считать стабильным при отклонении максимального значения рабочего давления от минимального во время измерения не более чем на 10%. При периодическом изменении параметров работы скважины время замера дебита жидкости можно принимать кратным периоду изменения этих параметров. 4 з.п.ф-лы, 4 табл.

Формула изобретения RU 2 066 738 C1

1. Способ эксплуатации системы газлифтных скважин, включающий измерение дебита жидкости, газа и водосодержания продукции скважин, построение зависимостей дебита от расхода рабочего агента, определение оптимальных расходов рабочего агента, переход на новый режим по скважинам, сопоставление замеренных параметров с расчетными данными и повторение операции перехода при их рассогласовании до момента достижения оптимальной работы системы, отличающийся тем, что на каждой скважине на каждом расходе газа при фиксированном стабильном значении рабочего давления газа и текущей обводненности измеряют более одного раза дебит жидкости, затем по совокупности измеренных дебитов определяют относительную погрешность измерения как отношение разности между каждым замером и средневзвешенным к средневзвешенному, повторяя эти процедуры для всех скважин, подключенных к данной замерной установке, получают совокупности экспериментальных данных, на основе которых определяют для каждой замерной установки зависимость погрешности измерения от дебита жидкости, газо- и водосодержания продукции и аппроксимируют зависимость дебита жидкости от расхода газа кусками парабол второго порядка, при этом каждый последующий кусок, соответствующий большему расходу газа, имеет меньшее значение отношения изменения дебита жидкости к изменению расхода газа, границы кусков выбирают на основе скачков изменения рабочего давления газа, а количество точек ввода газа оказывается не менее количества кусков парабол аппроксимирующей кривой, при этом соблюдают требования непревышения погрешности аппроксимации как разности между средневзвешенным и рассчитанным при аппроксимации, над погрешностью измерения для данной конкретной скважины при данных режимах, по полученным зависимостям устанавливают оптимальные технологические режимы, изменяя расход рабочего агента, при этом момент достижения оптимальной работы системы скважин выбирают из требования непревышения максимальной абсолютной погрешности замеряемых дебитов из рассматриваемой группы скважин над разницей суммарной добычи по этой группе скважин между предыдущим и последующим этапами оптимизации. 2. Способ по п.1, отличающийся тем, что при аппроксимации для каждого замера устанавливают свой вес, значение которого выбирают опытным путем на основании погрешности измерения, увеличивая вес при меньших погрешностях на данных режиме и длительности измерения, увеличивая вес при увеличении длительности. 3. Способ по п.1, отличающийся тем, что количество замеров и их продолжительность увеличивают при превышении погрешности на предыдущих замерах относительно средней погрешности измерения для установок, применяемых на данном комплексе скважин при одинаковых значениях параметров, влияющих на дебит жидкости, газо-и водосодержания. 4. Способ по п.1, отличающийся тем, что при увеличении погрешности замерного устройства, определяемой как среднее относительных погрешностей всех замеров на всех скважинах, подключенных к данной замерной установке, выше средней для установок, применяемых на данном комплексе скважин при одинаковых значениях параметров, влияющих на измерения дебита жидкости, газо- и водосодержания, производят ремонт либо замену данной замерной установки. 5. Способ по п.1, отличающийся тем, что при периодическом изменении параметров работы скважины время замера дебита жидкости устанавливают кратным периоду изменения этих параметров.

Документы, цитированные в отчете о поиске Патент 1996 года RU2066738C1

Машина для изготовления проволочных гвоздей 1922
  • Хмар Д.Г.
SU39A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ эксплуатации системы газлифтных скважин 1988
  • Леонов Василий Александрович
  • Соколов Алексей Николаевич
SU1700208A1
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 066 738 C1

Авторы

Устюжанин А.М.

Леонов В.А.

Даты

1996-09-20Публикация

1993-05-26Подача