СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА ПОРОШКООБРАЗНЫХ МАТЕРИАЛОВ Российский патент 1996 года по МПК C22B9/18 

Описание патента на изобретение RU2068453C1

Изобретение относится к металлургии, в частности к производству металла методом электрошлакового переплава (ЭШП).

В настоящее время одним из важных направлений развития электрошлаковой технологии является получение марочной стали из некомпактных материалов. Сущность процесса ЭШП заключается в переплаве расходуемого электрода в рафинировочном шлаке, находящимся в охлаждаемом кристаллизаторе. Переплав некомпактных материалов методом ЭШП можно осуществлять, предварительно их компактируя в электрод, например, пресованием порошкообразных материалов, состав которых соответствует заданному составу выплавляемого металла (заявка ФРГ N 2834436 "Электрод", опублик. в журнале "Изобретения в СССР и за рубежом", 1980, N 7, вып. 63).

Недостатком этого способа является высокая трудоемкость подготовительных операций. Затраты на изготовление расходуемых электродов из некомпактных материалов превышают 40 60 в структуре себестоимости электрошлакового слитка.

Наиболее близким к изобретению по технической сущности и достигаемым результатам является способ электрошлакового переплава некомпактных материалов, в том числе металлоабразивной пыли, металлических порошков, шламов, при котором эти материалы с помощью дозаторов подают непосредственно в жидкую шлаковую ванну, находящуюся в охлаждаемом кристаллизаторе и нагреваемую с помощью неплавящихся электродов ("Сталь", 1990, N 12, с. 22 25). Формируемый под слоем шлака металлический слиток содержит практически все легирующие элементы, которые были в шихтовых материалах.

Недостаток этого способа заключается в том, что содержащиеся в абразивной пыли мелкие металлические частицы очень медленно осаждаются в шлаковой ванне, из-за чего скорость наплавления слитка снижается в 2 3 раза по сравнению с плавкой более крупных частиц. Низкая скорость осаждения частиц порошкообразных материалов приводит также к снижению выхода годного в конечном шлаке содержится (по массе) до 60 металлической составляющей.

Цель изобретения повышение производительности процесса и выхода годного материала.

Цель достигается тем, что вместе с металлизованными порошкообразными материалами в жидкий шлак подают металлические материалы (лигатуры) фракций 1 5 мм, содержащие восстановительные элементы, например, Al, Si, Ti в количестве достаточном для расплавления этих материалов за счет тепла экзотермических реакций окисления этих элементов, причем скорость подачи металлических материалов составляет 1 5 от скорости подачи порошкообразных металлизованных материалов.

Новизна усматривается также в том, что содержание восстановительных элементов в металлических материалах составляет 10 50 Вышеперечисленные отличительные от прототипа признаки обуславливают соответствие предлагаемого технического решения критерию "новизна".

По каждому отличительному признаку проведен поиск известных решений со сходными признаками, выполняющими аналогичную функцию по научно-технической литературе и патентной документации. Отсутствие таких решений свидетельствует о соответствии предложенного технического решения критерию "существенные отличия".

Сущность изобретения состоит в том, что присаживаемые вместе с порошкообразными металлизированными материалами металлические гранулы (лигатура) размером 1 5 мм расплавляются в верхних слоях шлаковой ванны (за счет экзотермической реакции окисления содержащихся в их составе активных элементов) и, опускаясь в шлаковой ванне, обеспечивают коагуляцию мелких частиц металлизованных материалов. При этом общая скорость опускания металлических капель определяется скоростью опускания частиц крупных фракций. Математическое обоснование этого процесса следующее.

Скорость опускания мелких частиц металла в шлаке можно оценить по формуле Стокса

где v скорость опускания частиц;
g ускорение силы тяжести;
R радиус частицы;
ρ, ρo плотность металла и шлака соответственно;
η вязкость шлака.

Из формулы (1) видно, что скорость опускания пропорциональна квадрату радиуса частицы. Расчет показывает, что скорость опускания частицы радиусом около 1 мм составляет порядка 1 м/с, а скорость опускания частицы 1 мкм (10-3 мм) составляет 10-6 м/с. Именно это и приводит к тому, что в шлаке скапливается большое количество частиц микронного размера. В результате, либо надо уменьшать скорость подачи в шлак пылевидных отходов, либо из-за большого количества металлических частиц в шлаке он теряет свои свойства (электросопротивление). Присадка в шлак более крупных частиц лигатуры приводит к резкому увеличению скорости коагуляции мелких частиц. В результате они укрепляются и скорость их опускания в шлаковой ванне резко возрастает.

Количественно увеличение скорости коагуляции частиц оценивается по выражению

где отношение числа столкновений частиц, которые приводят к их коаугуляции;
η вязкость шлака;
градиент скорости конвективных потоков в шлаковой ванне;
K константа Больцмана;
T температура;
ri и rj радиусы частиц в шлаке.

При всех прочих равных условиях ввод в шлаковую ванну более крупных частиц лигатуры увеличивает вероятность коагуляции практически пропорционально r3j

. Иными словами, если к частицам микронного размера добавляют частицы размером порядка 1 мм, вероятность их коагуляции возрастает в 109>.

Таким образом, укрупнение частиц металлических порошков и их скорость опускания в шлаковой ванне может регулироваться присадками более крупных частиц в количестве достаточном для того, чтобы охватить весь объем шлаковой ванны. В зависимости от плотности вводимых частиц лигатуры, которая определяет их время нахождения в шлаковой ванне, это количество как показали опытные плавки, составляет 1 5 от массы частиц металлических порошков.

Для эффективной коагуляции мелких частиц пыли с более крупными частицами лигатуры необходимо, чтобы частицы лигатуры расплавлялись как можно быстрее, в верхних слоях шлаковой ванны. Ускорение плавления частиц лигатуры достигается выделением тепла при взаимодействии содержащихся в них легкоокисляемых элементов и окислами железа шлака или кислородом воздуха. Это явление широко используется, например, при алюмотермических процессах. Тепло, необходимое для расплавления подаваемой в шлак лигатуры, определяется выражением:
P ≥ Gлиг [С (tпл to) + q (3)
где Р тепло, ккал/мм, необходимое для плавления подаваемой лигатуры;
Gлиг весовая скорость подачи лигатуры кт/мм;
C теплоемкость лигатуры;
q скрытая теплота плавления;
tпл температура плавления лигатуры;
to начальная температура лигатуры при ее попадании в шлак.

Количество выделяющегося тепла при окислении таких элементов, как Al, Si, Ti, рассчитывается по термодинамическим параметрам соответствующих реакций. Например, для Al
2Al+3FeO = Al2O3+3Fe+ΔH
По справочникам определяем ΔH 230800 кал/моль Al2O3. Таким образом, при внесении в шлак 1 кг Аl выделение тепла составит Руд 4274,1 ккал. Если Al находится в составе лигатуры вносимое тепло Р Руд • GAl, где GAl количество Al в лигатуре.

Для расплавления лигатуры необходимо выполнение условия
Pуд • GAl ≥ Gлиг [С (tпл to) + q]
Поскольку • 100-ное содержание Al в лигатуре (% Аl)

Решением управления (4) получаем минимальное содержание Аl в лигатуре, необходимое для ее плавления за счет тепла экзотермических реакций, таким же образом по справочным данным рассчитываются необходимое содержание в лигатуре других активных элементов, либо комбинаций этих элементов. Кроме высокоактивных элементов-раскислителей в лигатуре может содержаться железо, а также легирующие компоненты, которые обеспечивают попадание получаемого металла в заданный химический состав, например, если в абразивной пыли в результате ее смешивания с отходами менее легированной стали содержание компонентов ниже уровня марочного состава.

Оптимальность предлагаемых параметров подтверждена в ходе проведения серии опытных плавок.

Пример конкретного осуществления. Плавки проводили на стандартной электрошлаковой установке ЭШП 0,25 ВГЛ, дополнительно оснащенный системой дозирования и ввода в кристаллизатор сыпучих компонентов, кристаллизатор ⊘ 300 мм. Для расплавления и нагрева шлака использовали неплавящийся графитовый электрод o 150 мм. Плавки начинали на твердом старте на шлаке АНФ-6 (30 Al2O3; 70 CaF2). После расплавления и нагрева шлака до температуры 1650 1700oC начинали ввод сыпучих компонентов. В качестве основного шихтового материала использовали отходы абразивного шлифования стали Р6М5. Одновременно вводили дробленную лигатуру с различным содержанием алюминия. Дробленная лигатура предварительно рассеивалась на различные фракции. Переплав абразивной пыли вели при токе 3,0 40 кА и напряжении U 70 В. После плавки производили взвешивание и анализ шлаковой ванны на наличие в ней металлической составляющей, а также взвешивание полученного слитка. По соотношению расхода абразивной пыли и массы слитка определяли выход годного. Результаты опытных плавок приведены в таблице.

Анализ представленных в таблице результатов плавок показал следующее:
без подачи лигатуры или при содержании Al в лигатуре менее 10 даже при низкой скорости подачи абразивного порошка не удалось получить полного слитка, выход годного составлял 60 65 (плавки 1 и 2);
подачи лигатуры с 10 Al со скоростью около 1 от скорости подачи абразивного порошка и лигатуры мелкой фракции также не привела к положительным результатам (плавки 3 4);
использование крупной лигатуры фракцией более 5 мм не обеспечивает требуемую равномерность ее подачи в результате чего возникает выливание шлака и появление дуговых разрядов (плавка 7);
присадка лигатуры в количестве более 5 от массы абразивной пыли не приводит к дальнейшему повышению выхода годного (плавки 8 и 9);
использование лигатуры с содержанием Al 10 60 а также лигатуры, содержащей кроме алюминия кремний и марганец, в количестве 2 5,0 от массы абразивной пыли позволило увеличить скорость плавки в 2,0 раза, а выход годного до 90 Таким образом, по сравнению с известным способом электрошлакового переплава порошкообразных материалов, предложенное техническое решение обеспечивает повышение выхода годного с 60 70 до 90 и производительности процесса в 2 раза. При этом экономический эффект только за счет повышения выхода годного при переплаве абразивной пыли стали Р6М5 составляет не менее Э 200 • 0,9 2000 • 0,7 300 р на 1 т слитков (2000 стоимость 1 т слитков стали типа Р6М5).

Похожие патенты RU2068453C1

название год авторы номер документа
УСТАНОВКА ДЛЯ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА И ПЛАВКИ 1994
  • Соломко В.П.
  • Волков А.Е.
  • Исаханов Э.С.
  • Дроздов В.С.
  • Павлюк Ю.И.
  • Михайлов А.В.
  • Миронов В.М.
  • Волкова А.И.
RU2082788C1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА НЕКОМПАКТНЫХ МАТЕРИАЛОВ 1989
  • Яковенко В.А.
  • Латаш Ю.В.
  • Буцкий Е.В.
  • Богданов С.В.
  • Шалимов А.Г.
  • Лактионов А.В.
SU1739653A1
СПОСОБ ПРОИЗВОДСТВА ВАЛЬЦА 1993
  • Дроздов В.С.
  • Павлюк Ю.И.
  • Волков А.Е.
  • Миронов В.М.
  • Соломко В.П.
  • Волкова А.И.
  • Исаханов Э.С.
RU2032754C1
Способ электрошлакового переплава некомпактных материалов 1989
  • Яковенко Владимир Анатольевич
  • Латаш Юрий Вадимович
  • Буцкий Евгений Владимирович
  • Богданов Сергей Васильевич
  • Ярулин Владимир Николаевич
  • Сисев Александр Павлович
  • Калинин Василий Иванович
SU1700073A1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ ДУПЛЕКС-ПРОЦЕССОМ 1988
  • Пак Ю.А.
SU1603775A1
Способ предварительного раскисления стали 1980
  • Ширер Григорий Бенционович
  • Комельков Виктор Константинович
  • Салаутин Виктор Александрович
  • Петров Борис Степанович
  • Зырянов Юрий Евгеньевич
  • Катаев Владимир Михайлович
  • Бушмелев Владимир Матвеевич
  • Комов Юрий Флегонтович
  • Морозов Сергей Сергеевич
  • Данилин Владимир Владимирович
SU863659A1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 2007
  • Дуб Владимир Семенович
  • Левков Леонид Яковлевич
  • Ригина Людмила Георгиевна
  • Волков Виталий Георгиевич
  • Васильев Яков Маркович
  • Баринова Светлана Николаевна
RU2371491C2
СПОСОБ ПРОИЗВОДСТВА СТАЛИ И СПЛАВОВ 1989
  • Савостьянов И.А.
  • Соколов Л.Н.
RU1716790C
Способ выплавки подшипниковой стали 1980
  • Ширер Григорий Бенционович
  • Комельков Виктор Константинович
  • Салаутин Виктор Александрович
  • Петров Борис Степанович
  • Зырянов Юрий Евгеньевич
  • Катаев Владимир Михайлович
  • Бушмелев Владимир Матвеевич
  • Комов Юрий Флегонтович
  • Морозов Сергей Сергеевич
  • Данилин Владимир Владимирович
SU865925A1
Способ непрерывного плавления дисперсной шихты в печи постоянного тока со стекающим слоем расплава 1991
  • Савостьянов Игорь Андреевич
  • Соколов Лев Николаевич
SU1781306A1

Иллюстрации к изобретению RU 2 068 453 C1

Реферат патента 1996 года СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА ПОРОШКООБРАЗНЫХ МАТЕРИАЛОВ

Использование: в металлургии, в частности в производстве металла способом электрошлакового переплава. Сущность изобретения: одновременно с порошкообразными материалами в шлаковую ванну подают металлические материалы, содержащие восстановительные элементы, типа Al, Si, Ti со скоростью 1 - 5 % от скорости подачи порошкообразных материалов, и с фракционным составом 1 - 5 мм. Содержание восстановительных элементов в металлических материалах составляет 10 - 50 %. 1 з. п. ф-лы, 1 табл.

Формула изобретения RU 2 068 453 C1

1. Способ электрошлакового переплава порошкообразных материалов, включающий подачу порошкообразных материалов в шлаковую ванну и их переплав, отличающийся тем, что, с целью повышения производительности процесса и выхода годного металла, одновременно с порошкообразными материалами в шлаковую ванну подают металлические материалы, содержащие восстановительные элементы Al, Si, Ti, со скоростью подачи 1 5% от скорости подачи порошкообразных материалов и фракционным составом 1 5 мм. 2. Способ по п.1, отличающийся тем, что содержание восстановительных элементов в металлических материалах составляет 10 50%

Документы, цитированные в отчете о поиске Патент 1996 года RU2068453C1

Заявка ФРГ N 2834436, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Журнал "Сталь", N 12, 1990, с
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 068 453 C1

Авторы

Волков А.Е.

Лактионов А.В.

Шалимов А.Г.

Мончинский Д.Б.

Бедрин Н.И.

Гесс О.С.

Волк Л.П.

Даты

1996-10-27Публикация

1991-06-13Подача