Изобретение относится к горному делу, в частности к способам рудных месторождений способом выщелачивания.
В настоящее время в горнодобывающей промышленности применяются способы разработки рудных тел, предусматривающие ведение процесса выщелачивания через пробуренные до рудной залежи скважины, по которым выщелачивающие растворы подаются к рудной залежи, фильтруются через поры в руде, выщелачивая рудный компонент до ближайших дренирующих скважин и по ним окачиваются на поверхность. Наиболее часто употребляемыми растворителями при выщелачивании руд являются растворы кислот.
Повышение проницаемости рудного массива при выщелачивании через скважины достигается путем его предварительного разрыхления известными способами, например с использованием взрывчатых веществ [1]
При разработке рудных тел на больших глубинах применение этого способа затруднено вследствие экзотермических реакций приводящих к повышению температуры и затуханию процесса выщелачивания.
Наиболее близким техническим решением является способ подземного выщелачивания сульфидсодержащих полиметаллических руд (а. с. N 1352152) [2] предусматривающий проходку горных выработок, рыхление массива, орошение его пластовыми водами, окисление руд путем подачи в тело воздуха и затем выщелачивающего раствора через нагнетательные скважины с последующей откачкой продуктивного раствора.
Описанный способ трудно- и энергоемок, не дает возможности вести разработку бедных руд на больших глубинах.
Целью изобретения является упрощение и удешевление способа разработки рудных тел, достижение возможности разработки руд на больших глубинах при одновременном получении электроэнергии.
Поставленная цель достигается тем, что в известном способе включающем проходку скважин, рыхление массива, закачку в скважины окислителя и выщелачивающего раствора, разработку ведут двумя системами скважин, одну из которых проходят в рудном теле, другую в околорудном пространстве, окислитель подают вместо с выщелачивающим раствором, в качестве которого используют электролит, в скважины опускают электроды и системы пар скважин соединяют в электрическую цепь через нагрузку, а продуктивный раствор откачивают на скважины, пройденных в рудном теле.
Сущность изобретения состоит в том, что после насыщения зоны трещиноватости электролитом и помещения в скважины, пройденные в околорудном пространстве электродов, при закачке окислителя (воздуха, кислорода, и др.) и соединении скважин в электрическую цепь, включающую нагрузку, по принципу работы топливных элементов [2] начинают протекать следующие полуреакции и вырабатывается электрическая энергия.
(например:
В результате прохождения реакций ионы металла переводятся в растворимую форму в виде сульфатов этих металлов, после чего производится откачка продуктивного раствора.
Расположение скважин в зависимости от формы залегания рудного тела изображено на фиг. 1 и 2, где:
1, 2 скважины, пробуренные в околорудном пространстве,
3, 4 скважины, пробуренные в рудном теле, R-нагрузка.
В качестве примера может быть рассмотрен вариант, когда рудным материалом будет халькопирит. В присутствии водного раствора электролита (соли, например NaCl; кислоты, например H2SO4 серной и т.п.) будет протекать следующая реакция:
CuFeS2+4O2_→ CuSO4+FeSO4 (4), (5).
Как показывает расчет изменения энергии Гиббса реакция будет идти в интервале от 25 до 150oC и выше.
где ΔG реакции -1337 кДж/моль,
ΔG реакции -1625,76 кДж/моль.
ΔSo Изменение стандартной энтропии, Дж/к-моль.
ΔΗo Изменение стандартной энтальпии кДж/моль.
ΔGo Изменение энергии Гиббса кДж/моль
ΔSo, ΔHo и ΔGo при образовании из простых веществ
а, в, с коэффициенты управления C
Образовавшиеся продукты реакции CuSO4 и FeSO4 откачиваются вместо с раствором электролита через скважины, пройденные в рудном теле.
В связи с процессом электромеханического окисления, протекающим по общему уравнению:
(например:
на электродах системы скважин возникает разность потенциалов, характеристика которой рассчитывается известным способом.
Подобным образом можно охарактеризовать процессы протекающие при электрохимическом выщелачивании других халькогенидных руд. Электролит и окислитель в каждом случае выбираются индивидуально. Физические условия возможно корректировать, меняя сопротивление внешней нагрузки (R), температуру подаваемого электролита и количество растворенного окислителя.
Объемы закачиваемых электролита и окислителя определяют исходя из: объема области пористости, объема рудного тела и концентрации рудного компонента.
Технико-экономические обоснования.
Предлагаемый способ по сравнению с прототипом позволяет значительно упростить технологию разработки рудных месторождений: поскольку исключается проходка рудных выработок и выщелачивание производится непрерывно в одну стадию.
Способ по прототипу неосуществим при залегании рудных тел на больших глубинах.
Экономичность увеличивается за счет получения электроэнергии. ЫЫЫ1
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩИХ ПОЛИМЕТАЛЛИЧЕСКИХ РУД, КОНЦЕНТРАТОВ, ВТОРИЧНОГО СЫРЬЯ | 2011 |
|
RU2467802C1 |
Способ подземного выщелачивания малопроницаемых руд,залегающих в хорошопроницаемых вмещающих породах | 1985 |
|
SU1317102A1 |
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТОСОДЕРЖАЩИХ РУД | 1993 |
|
RU2049228C1 |
КОМБИНИРОВАННЫЙ ГЕОТЕХНОЛОГИЧЕСКИЙ СПОСОБ ОТРАБОТКИ МЕСТОРОЖДЕНИЙ РУД МЕТАЛЛОВ | 2006 |
|
RU2348800C2 |
СПОСОБ ПОДГОТОВКИ РУДНЫХ ТЕЛ НА МЕСТЕ ЗАЛЕГАНИЯ К ВЫЩЕЛАЧИВАНИЮ ПОЛЕЗНЫХ КОМПОНЕНТОВ | 2012 |
|
RU2495238C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ РУД | 2013 |
|
RU2550764C1 |
Способ подземной разработки рудных месторождений подземным выщелачиванием | 1991 |
|
SU1834972A3 |
СПОСОБ ПЕРЕРАБОТКИ МИНЕРАЛЬНОГО СЫРЬЯ, СОДЕРЖАЩЕГО ЗОЛОТО И СЕРЕБРО, ИЗ РУД НА МЕСТЕ ИХ ЗАЛЕГАНИЯ | 1999 |
|
RU2146763C1 |
СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ РУД ЦВЕТНЫХ МЕТАЛЛОВ, СОДЕРЖАЩИХ ВОССТАНОВИТЕЛИ НА МЕСТЕ ИХ ЗАЛЕГАНИЯ | 2003 |
|
RU2264535C2 |
Способ подземного выщелачивания сульфидсодержащих полиметаллический руд | 1986 |
|
SU1352152A1 |
Изобретение относится к подземной добыче руд и м. б. использовано при разработке халькогенидных руд. Цель - снижение затрат при одновременном получении на месте залегания электроэнергии. Во вмещающих породах и рудном теле бурят скважины. Размещают в них электроды. При этом катод размещают в рудном теле, а анод во вмещающих породах на расстоянии друг от рудного тела. Электроды в скважинах соединяют в электрическую цепь. Подают в руду выщелачивающий раствор - электролит. Вместе с раствором подают окислитель. В результате начинают перетекать реакции электрохимического окисления. На электродах возникает разность потенциалов. Осуществляют съем электрического тока с электродов. При этом возникает электровоздействие на процесс выщелачивания и вырабатывается электрический ток. 2 ил.
Способ разработки руд, включающий размещение в скважинах, пробуренных во вмещающих породах и рудном теле электродов, подачу выщелачивающего раствора, воздействие на руду-раствор электрическим током и откачку продуктивных растворов, отличающийся тем, что, с целью понижения эффективности разработки халькогенидных руд за счет снижения затрат на воздействие электрическим током и одновременного получения электроэнергии путем получения электрического тока на месте залегания, катод размещают в рудном теле, анод во вмещающих породах на расстоянии от рудного тела, а электровоздействие осуществляют путем съема электрического тока с электродов, при этом в пласт подают газообразный окислитель.
Способ подземного выщелачивания сульфидсодержащих полиметаллический руд | 1986 |
|
SU1352152A1 |
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Способ подземного выщелачивания полезных ископаемых из маломощных малопроницаемых пластов | 1985 |
|
SU1315606A1 |
Выбрасывающий ячеистый аппарат для рядовых сеялок | 1922 |
|
SU21A1 |
Авторы
Даты
1996-11-10—Публикация
1989-01-19—Подача