ТВЕРДОТЕЛЬНЫЙ СЦИНТИЛЛЯТОР Российский патент 1996 года по МПК G01T1/20 

Описание патента на изобретение RU2069372C1

Изобретение относится к области экспериментальной ядерной физики и может быть использовано для регистрации ионизирующего излучения, вызывающего световые вспышки в сцинтилляторе.

Известны кристаллофосфоры (например, ZnS, Csl, NaI), органические кристаллы (например, антрацен, стильбен), растворы пластмасс и др. [1]
Недостатком известных твердотельных сцинтилляторов является высокая плотность их твердотельной основы ρ=4,5÷1,1 г/см3 (Сsl -ρ=4,5 г/см3; раствор р-терфинила в ксилоле с добавкой РОРОР -ρ=1,1 г/см3 (РОРОР-1,4-ди(-2-(5-фенилоксазонол))-бензол), препятствующая при регистрации частиц низких энергий. Поэтому для исследования частиц малых энергий (≅ 0,1 МэВ) и осколков деления ядер в качестве сцинтилляторов необходимо применять инертные газы (например, Хе, Kr, Ar и др.).

Задачей настоящего изобретения является понижение плотности сцинтиллятора. Для этого в качестве твердотельной основы сцинтиллятора выбран кремниевый аэрогель. Как сцинтиллирующую добавку можно использовать, например, РОРОР.

Аэрогели это высокопористые, искусственно созданные, твердотельные материалы, состоящие, в основном, из окисей и воздуха (или другого газа). Кремниевые аэрогели представляют собой смесь SiO2 и воздуха. Впервые были синтезированы еще в 1932 г. [2] однако их широкое применение началось лишь 10-15 лет тому назад после того, как было найдено множество технических применений их уникальным свойствам (таких как низкий показатель преломления n 1,01-1,1; низкая плотность, заполняющая промежуток между газами и концентрированными средами ρ=0,1÷0,5 г/см3; оптическая прозрачность; низкая теплопроводность и др.).

По своей структуре кремниевый аэрогель состоит из зерен SiO2 с диаметром ≈ 4 нм и воздушных пор, средний диаметр которых составляет ≈ 60 нм [3]
В результате частица, пролетающая через эту мелкозернистую структуру, при влете и вылете из многочисленных шариков SiO2 будет излучать оптическое переходное излучение (ОПИ) со сплошным спектром, основная доля которого, благодаря зависимости спектра ~1/λ, приходится на ультрафиолетовую область. Часть ультрафиолетового спектра переходного излучения, переизлученная благодаря сцинтиллирующей добавке в видимую часть спектра, выйдет из аэрогеля и может быть дополнительно использована при регистрации частиц аэрогельным сцинтиллятором.

Кремниевые аэрогели прозрачны для видимой части спектра, и поэтому основное требование к сцинтилляторам прозрачность для собственного излучения в предлагаемом аэрогельном сцинтилляторе выполнено.

На фиг. 1 схематически изображена внутренняя структура кремниевого аэрогеля [3] где: 1 зерна SiO2 нм, 2 воздушные поры нм, 3 регистрируемые частицы (электроны). Пролетая через множество мелких кремниевых шариков, заряженная частица при влете и вылете из шарика испускает оптическое переходное излучение.

На фиг. 2 представлен расчет спектра ОПИ, испускаемого заряженной частей в SiO2 [4] при однократном переходе границы, где d2W/dΩdλ энергия, излучаемая частицей в единицу пространственного угла dΩ на единицу длины волны dλ; q угол наблюдения излучения относительно направления движения частицы. Из рисунка видно, что основная доля испускаемого ОПИ лежит в коротковолновой части спектра.

На фиг. 3 представлены спектральные зависимости поглощения и излучения добавки РОРОР [5] где А молярный коэффициент поглощения излучения (кривая 1), Е коэффициент испускания излучения (кривая 2). Из рисунка видно, что максимум кривой поглощения добавки РОРОР находится в коротковолновой области спектра, ~λ=350 нм, где испускается основная доля ОПИ. Конкретный пример выполнения.

На фиг. 4 представлена схема опыта испытания образца аэрогельного сцинтиллятора аэрогеля с добавкой РОРОР, где 1 аэрогельный сцинтиллятор; 2 ФЭУ; 3 радиоактивный источник Tl20181

; 4 коллиматор, Pb; 5 светозащитный кожух; Д дискриминатор; П пересчетное устройство.

Из исходного сырья тетраметоксисилана (СН3O)4Si был сначала приготовлен образец алкогеля. Затем методом сверхкритической сушки, проводимой в автоклаве в заданном режиме температуры и давления, образец алкогеля был превращен в кремниевый аэрогель. После откачки воздуха из автоклава образец аэрогеля был наполнен парами сцинтиллирующей добавки РОРОР. Сцинтиллирующая добавка, внесенная таким способом в аэрогель, составила ≈ 10% от его общей массы.

Образец полученного аэрогельного сцинтиллятора 1 (фиг. 4) был затем помещен в специальную измерительную камеру 5 между коллимированным источником электронов Tl20181

-3 и фотокатодом ФЭУ 2. Регистрация сигналов от ФЭУ проводилась стандартным одноканальным спектрометром (STRAHLUNGSMESSGERAT, VEB RFT MESSELEKTRONIK, TYP 20026), содержащим дискриминатор Д и пересчетное устройство П. Скорость счета при этом по сравнению с аэрогелем без сцинтиллирующей добавки возросла примерно в 5 раз.

Испытания изготовленного нами образца аэрогельного сцинтиллятора в сцинтилляционном счетчике, схема которого приведена на фиг. 4, таким образом, подтвердили его пригодность для регистрации электронов, испускаемых радиоактивным источником Tl20181

c энергиями Е < Е макс. (Tl20181
) (Емакс. 770 кэВ).

Аэрогельный сцинтиллятор, благодаря своей низкой плотности, пригоден для сцинтилляционных счетчиков, создаваемых для исследований частиц малых энергий. Однако его также можно использовать и в экспериментах физики высоких энергий, в сцинтилляционных счетчиках, входящих в комплексы аппаратуры, где имеется необходимость помещать на пути частиц как можно меньше вещества.

Похожие патенты RU2069372C1

название год авторы номер документа
ЖИДКИЙ СЦИНТИЛЛЯТОР ДЛЯ РЕГИСТРАЦИИ γ -КВАНТОВ 1994
  • Береснев В.И.
  • Марков Ю.Я.
RU2080625C1
ЖИДКИЙ СЦИНТИЛЛЯТОР ДЛЯ РЕГИСТРАЦИИ НЕЙТРОНОВ 1995
  • Береснев В.И.
  • Марков Ю.Я.
RU2078355C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ И ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ВИСМУТА 1991
  • Перелыгин В.П.
  • Стеценко С.Г.
RU2014589C1
ЖИДКИЙ СЦИНТИЛЛЯТОР ДЛЯ РЕГИСТРАЦИИ НЕЙТРОНОВ 1992
  • Береснев В.И.
  • Марков Ю.Я.
RU2069872C1
ПЛАСТМАССОВЫЙ СЦИНТИЛЛЯТОР 1998
  • Больбит Н.М.
  • Тарабан В.Б.
  • Шелухов И.П.
  • Милинчук В.К.
RU2150129C1
СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АКТИВИРОВАННОГО МОНОКРИСТАЛЛИЧЕСКОГО СИЛИКАТА ГАДОЛИНИЯ 1992
  • Бурачас Станислав Феликсович[Ua]
  • Бондарь Валерий Григорьевич[Ua]
  • Кухтина Нина Николаевна[Ua]
  • Мартынов Валерий Павлович[Ua]
  • Рыжиков Владимир Диомидович[Ua]
  • Васильев Андрей Атлантович[Ru]
  • Селиванов Владимир Иванович[Ru]
RU2046371C1
Теллурсодержащий жидкий сцинтиллятор 2022
  • Немченок Игорь Борисович
  • Суслов Иван Андреевич
  • Быстряков Артем Дмитриевич
RU2798227C1
ПОЛУПРОВОДНИКОВЫЙ МИКРОКАНАЛЬНЫЙ ДЕТЕКТОР С ВНУТРЕННИМ УСИЛЕНИЕМ СИГНАЛА 2002
  • Садыгов З.Я.-О.
  • Железных И.М.
  • Бокова Т.Ю.
  • Стойков А.В.
  • Мусиенко Ю.В.
RU2212733C1
ДЕТЕКТОР ПОЛНОГО ПОГЛОЩЕНИЯ 1990
  • Акимов Д.Ю.
  • Акимов Ю.К.
SU1720403A1
СПОСОБ ИЗГОТОВЛЕНИЯ РЕЗОНАНСНОГО СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА 2009
  • Сарычев Дмитрий Алексеевич
  • Сташенко Вячеслав Владимирович
  • Новиковский Николай Михайлович
RU2405174C1

Иллюстрации к изобретению RU 2 069 372 C1

Реферат патента 1996 года ТВЕРДОТЕЛЬНЫЙ СЦИНТИЛЛЯТОР

Сущность изобретения: в качестве основы твердотельного сцинтиллятора используют прозрачный кремниевый аэрогель. Кремниевый аэрогель состоит из зерен SiO2 с диаметром около 4 нм и воздушных пор, средний диаметр которых около 60 нм. В качестве сцинтиллирующей добавки может быть использован РОРОР. Аэрогельный сцинтиллятор благодаря своей низкой плотности может быть использован для исследования частиц малых энергий. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 069 372 C1

1. Сцинтиллятор, представляющий собой твердотельную основу с сцинтиллирующей добавкой, отличающийся тем, что в качестве основы выбран прозрачный кремниевый аэрогель. 2. Сцинтиллятор по п.1, отличающийся тем, что в качестве сцинтиллирующей добавки используется РОРОР.

Документы, цитированные в отчете о поиске Патент 1996 года RU2069372C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Физический энциклопедический словарь
- Москва, Советская энциклопедия, 1984, с
ПРИБОР ДЛЯ СЪЕМКИ СЛОЖНЫХ ПРОФИЛЕЙ, ПРЕИМУЩЕСТВЕННО ГРЕБНЫХ ВОЗДУШНЫХ И ВОДЯНЫХ ВИНТОВ 1922
  • Черемухин А.М.
SU733A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Kistler S.C
J
Phys
Chem, 34, 52(1932) 3
Poelz G
NIM, 195(1982), 491-503, 195(1982)
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Zrelov V.P., Ruzicka J
NIM, 160(1979), 327-336
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
D'Ambrosio C
et al
CEPN/PPE, 90-96, 1990.

RU 2 069 372 C1

Авторы

Зрелов Валентин Петрович[Ru]

Ружичка Ян[Cs]

Файнор Владимир[Cs]

Павлович Петр[Cs]

Кухта Любомир[Cs]

Есенак Карол[Cs]

Даты

1996-11-20Публикация

1992-06-15Подача