Изобретение относится к электроизмерительной технике и может быть использовано для измерения активной и реактивной мощности в цепях синусоидального тока.
Известен способ определения активной и реактивной мощности [1] заключающийся в том, что измеряют мгновенные значения тока и напряжения, формируют сигналы, ортогональные измеренным, нормируют их, перемножают напряжение с ортогональной копией тока, ток с ортогональной копией напряжения, ток с напряжением, и их ортогональные копии, которые затем суммируют и вычитают с последующим усреднением за период основной частоты, и затем вычисляют составляющие мощности. Однако данный способ обладает низким быстродействием, обусловленным тем, что время измерения составляет не менее периода входного сигнала.
Известен способ измерения активной и реактивной мощности [2] заключающийся в том, что измеряют мгновенные значения тока и напряжения, перемножают и усредняют результаты перемножения за период, перемноженные сигналы разделяют по знаку и усредняют отдельно, а затем вычисляют составляющие мощности. Однако данный способ обладает низкой точностью, обусловленной необходимостью выполнения операции перемножения в аналоговой форме, и низким быстродействием, обусловленным тем, что время измерения составляет не менее периода входного сигнала.
Наиболее близким по технической сущности является способ измерения активной и реактивной мощности [3] заключающийся в том, что измеряют мгновенные значения тока и напряжения в n точках периода, причем мгновенные значения тока и напряжения измеряют со сдвигом по фазе на углы β1 и β2,, затем эти значения перемножают для каждого из углов β1 и β2,, суммируют и по полученным числовым эквивалентам вычисляют составляющие мощности. Недостатком данного способа является низкое быстродействие, обусловленное тем, что наименьшее время измерения составляет не менее 2/3 периода входного сигнала.
Цель изобретения повышение быстродействия.
Поставленная цель достигается тем, что согласно способу измерения активной и реактивной мощности в цепях синусоидального тока, включающему измерения мгновенных значений тока и напряжения в равноотстоящие друг от друга моменты времени, вычисление значений составляющих мощности по результатам измерений, выполняют три измерения, в каждом из которых мгновенные значения тока и напряжения измеряют одновременно, интервал времени Δt между измерениями выбирают удовлетворяющим соотношению
где T период сигнала в исследуемой цепи, а значения составляющих мощности вычисляют по выражениям:
где P, Q значения соответственно активной и реактивной составляющих мощности;
I1, I2, I3 мгновенные значения тока, полученные в первом, втором и третьем измерениях;
U1, U2, U3 мгновенные значения напряжения, полученные в первом, втором и третьем измерениях.
На фиг. 1 представлены временные диаграммы, поясняющие способ; на фиг. 2 блок-схема устройства, реализующего способ; на фиг. 3 временные диаграммы, поясняющие работу устройства.
Сущность способа состоит в определении активной и реактивной составляющих мощности по результатам трех измерений мгновенных значений тока и напряжения в равноотстоящие друг от друга моменты времени, в каждом из которых мгновенные значения тока и напряжения измеряют одновременно, интервал времени Δt между измерениями выбирают удовлетворяющим соотношению , где T период сигнала исследуемой цепи, согласно выражениям:
где U1, U2, U3 мгновенные значения напряжения исследуемой цепи;
I1, I2, I3 мгновенные значения тока в исследуемой цепи.
Если сигналы напряжения и тока в исследуемой цепи содержат только первые гармоники, то
U1=Umsinα1; U2=Umsin(α1+ωΔt);
U3=Umsin(α1+2ωΔt); I1=Imsinα2;
I2=Imsin(α2+ωΔt); I3=Imsin(α2+2ωΔt),
где α1, α2 начальные фазы сигналов напряжения и тока;
Δt=t2-t1=t3-t2 интервал времени между двумя соседними выборками (фиг. 1).
При измерении активной мощности выражение (1) принимает вид:
Так как
Аналогично
В результате выражение принимает вид
Так как 1-cosωΔt=2sin2Δt;
cos2α1-cos(2α1+2ωΔt)=2sin(2α1+ωΔt)sinωΔt;
cos2α2-cos(2α2+2ωΔt)=2sin(2α2+ωΔt)sinωΔt,
то выражение принимает вид
Так как sinωΔt+sin(2α1+ωΔt)=2sin(α1+ωΔt)cosα1;
sinωΔt+sin(2α2+ωΔt)=2sin(α2+ωΔt)cosα2;
1-cos2ωΔt=sin2ωΔt,
то получим
Откуда
Так как cosα1cosα2+sinα1sinα2=cos(α1-α2),
то
где Φ угол сдвига фаз между направлением и током.
Отсюда следует, что выражение (1) соответствует значению активной мощности.
При измерении реактивной мощности выражение (2) принимает вид:
Используя те же соотношения, что и при выводе формулы для активной мощности, получим
Откуда
Так как sinα1cosα2-cosα1sinα2=sin(α1-α2), то
Отсюда следует, что выражение (2) соответствует значению реактивной мощности.
Устройство, реализующее предлагаемый способ (фиг. 2), содержит преобразователь напряжения в код 1, преобразователь тока в код 2, мультиплексор 3, вычислительный блок 4, блок 5 управления, генератор опорной частоты 6, ключ 7, счетчик 8, схему сравнения кодов 9, регистр сдвига 10, причем входные клеммы подключены к входам соответственно преобразователей напряжения 1 и тока 2, выходы которых соединены соответственно с входами мультиплексора 3, выход которого соединен с входом вычислительного блока 4, а управляющий вход соединен с вторым выходом блока 5 управления, подключенного первым, третьим и четвертым выходами соответственно к объединенным управляющим входам преобразователей напряжения 1 и тока 2, управляющим входам вычислительного блока 4 и ключа 7, а первым, вторым и третьим входами соответственно к выходам генератора опорной частоты 6, схемы сравнения кодов 9 и к шине "Пуск", соединенной с объединенными входами начальной установки регистра сдвига 10, вычислительного блока 4 и счетчика 8, при этом вход и выход ключа 7 соединены соответственно с выходом генератора опорной частоты 6 и входом счетчика 8, подключенного выходом к первому входу схемы сравнения кодов 9, второй вход и выход которой соединены соответственно с выходом и управляющим входом регистра сдвига 10.
Устройство работает следующим образом. После подачи импульса на шину "Пуск" устройства счетчик 8 обнуляется, вычислительный блок 4 переходит к началу выполнения программы, в регистр сдвига 10 записывается код Nt. Мультиплексор 3 подключает выход преобразователя напряжения 1 к информационному входу вычислительного блока 4.
По команде с блока 5 управления в момент времени t1 (фиг. 1) преобразователи напряжения 1 и тока 2 преобразуют входные сигналы в код. Величина напряжения на входе преобразователя напряжения 1 в это время равна U1=Umsinα1 а величина тока на входе преобразователя тока 2 равна I1=Imsinα2. Одновременно замыкается ключ 7 и импульсы с генератора 1 опорной частоты 6 начинают поступать на счетный вход счетчика 8.
Блок 5 управления формирует сигнал запроса на ввод, который поступает на управляющий вход вычислительного блока 4. Код N1U, пропорциональный напряжению U1, записывается в вычислительный блок 4.
После этого по команде с блока 5 управления мультиплексор 3 подключает выход преобразователя тока 2 к информационному входу вычислительного блока 4. Блок 5 управления формирует сигнал запроса на ввод, который поступает на управляющий вход вычислительного блока 4. Код N1I, пропорциональный току I1, записывается в вычислительный блок 4.
По команде с блока 5 управления мультиплексор 3 подключает выход преобразователя напряжения 1 к информационному входу вычислительного блока 4.
В момент времени t2, когда код на выходе счетчика 8 принимает значение Nt, на выходе схемы сравнения кодов 9 появится импульс, так как на второй вход схемы сравнения кодов 9 с выхода регистра сдвига 10 подан код Nt.
Этот импульс поступает в блок 5 управления и запускает преобразователи напряжения 1 и тока 2. Величина напряжения на входе преобразователя напряжения 1 в это время равна U2=Umsin(α1+ωΔt), а величина тока на входе преобразователя тока 2 равна I2=Imsin(α2+ωΔt).
По отрицательному фронту импульса с выхода схемы сравнения кодов 9 производится сдвиг регистра 10 влево. На выходе регистра 10 устанавливается код 2Nt.
На выходе блока 5 управления формируется сигнал запроса на ввод и код N2U, пропорциональный напряжению U2, с выхода преобразователя напряжения 1 записывается в вычислительный блок 4.
После этого по команде с блока 5 управления мультиплексор 3 подключает выход преобразователя тока 2 к информационному входу вычислительного блока 4. Блок 5 управления формирует сигнал запроса на ввод и код N2I, пропорциональным току I2, с выхода преобразователя тока 2 записывается в вычислительный блок 4.
По команде с блока 5 управления мультиплексор 3 подключает выход преобразователя напряжения 1 к информационному входу вычислительного блока 4.
В момент времени t3, когда код на выходе счетчика 8 примет значение 2Nt, на выходе схемы сравнения кодов 9 появится импульс, так как на второй вход схемы сравнения кодов 9 с выхода регистра сдвига 10 подан код 2Nt.
Этот импульс поступает в блок 5 управления и запускает преобразователи напряжения 1 и тока 2. Величина напряжения на входе преобразователя напряжения 1 в это время равна U3=Umsin(α1+2ωΔt), а величина тока на входе преобразователя тока 2 равна I3=Imsin(α2+2ωΔt)..
На выходе блока 5 управления формируется сигнал запроса на ввод и код N3U, пропорциональный напряжения U3, записывается в вычислительный блок 4.
После этого по команде с блока 5 управления мультиплексор 3 подключает выход преобразователя тока 2 к информационному входу вычислительного блока 4. Блок 5 управления формирует сигнал запроса на ввод и код N3I, пропорциональный току I3, записывается в вычислительный блок 4.
В вычислительном блоке 4 выполняются вычисления согласно выражениям:
где
.
Выходные коды Np и NQ пропорциональны соответственно активной и реактивной составляющим мощности.
Сомножитель sinωΔt в знаменателях выражений (3) и (4) обращается в ноль, если ωΔt=kπ, где k 0; 1; 2. Этот случай невозможен, так как Dt≠0, а выбирается из условия ωΔt<π или .
Знаменатели выражений (3) и (4) могут обращаться в ноль, если или I2=Imsin(α2+ωΔt)=0. Для того, чтобы устранить возможность деления на ноль, в вычислительном блоке 4 производится анализ кодов N2U и N2I, пропорциональных напряжению U2 и току I2.
Если, например, U2 0, а I2 ≠ 0, то интервал времени Δt увеличивается в 2 раза, т. е. Δt′=2Δt=t3-t1 (фиг. 3). В этом случае процесс измерения продолжается после момента времени t3.
По заднему фронту импульса с выхода схемы сравнения кодов 9, появляющемуся в момент t3, производится сдвиг регистра 10. На выходах регистра 10 устанавливается код 4Nt.
В момент времени t4 (фиг. 3), когда код на выходе счетчика 8 примет значение 4Nt, на выходе схемы сравнения кодов 9 появится импульс, так как на второй вход схемы сравнения 9 с выхода регистра 10 подан код 4Nt. Этот импульс поступает в блок 5 управления и запускает преобразователи напряжения 1 и тока 2. Величина напряжения на входе преобразователя напряжения 1 в это время равна U4=Umsin(α1+4ωΔt) а величина тока на входе преобразователя тока 2 равна I4=Imsin(α2+4ωΔt).
По сигналам запроса на ввод, поступающим с блока 5 управления, код N4U, пропорциональный напряжению U4 и код N4I, пропорциональный току I4, поочередно записываются в вычислительный блок 4. В вычислительном блоке 4 выполняются вычисления согласно выражениям:
В случае, если U2≠0, а I2 0, выходные коды определяются согласно следующим выражениям:
В случае, если U2 0, I2 0, выходные коды определяются согласно следующим выражениям:
Длительность временного интервала Δt выбирается минимальной и ограничена в основном только временем преобразования сигнала в код в преобразователях напряжения 1 и тока 2. В качестве вычислительного блока 4 может быть использована микроЭВМ или специальное программно-управляемое вычислительное устройство.
В известном способе измеряют мгновенные значения тока и напряжения в n точках периода, равномерно расположенных на периоде входного сигнала. При измерении в цепях синусоидального тока число точек n должно быть не менее 3. Таким образом, минимальное время измерения в известном способе составляет не менее 2/3 периода входного сигнала.
Данный способ обеспечивает более высокое быстродействие, так как время измерения не зависит от длительности периода сигнала, а определяется только длительностью временного интервала Δt..
Изобретение относится к электроизмерительной технике и может быть использовано для измерения активной и реактивной составляющих мощности в цепях синусоидального тока. Измеряют трижды мгновенные значения тока и напряжения в равноотстоящие моменты времени, в каждом из измерений мгновенные значения тока и напряжения измеряют одновременно, интервал времени между измерениями выбирают из соотношения , где T - период сигнала в исследуемой цепи, значения активной P и реактивной Q составляющих мощности вычисляют по выражениям:
где I1, I2, I3 - мгновенные значения тока в первом, втором и третьем измерениях, U1, U2, U3 - мгновенные значения напряжения в первом, втором и третьем измерениях. Устройство для осуществления способа содержит преобразователи 1, 2 напряжения и тока в код, мультиплексор 3, вычислительный блок 4, блок 5 управления, генератор 6 опорной частоты, ключ 7, счетчик 8, схему 9 сравнения кодов, регистр 10 сдвига. Способ характеризуется высоким быстродействием. 2 с.п. ф-лы, 3 ил.
где Т период сигнала в исследуемой цепи,
а значения составляющих мощности вычисляют по выражениям
где P, Q значения соответственно активной и реактивной составляющих мощности;
I1, I2, I3 мгновенные значения тока, полученные в первом, втором и третьем измерениях;
U1, U2, U3 мгновенные значения напряжения, полученные в первом, втором и третьем измерениях.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ определения активной и реактивной мощности | 1986 |
|
SU1377759A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ измерения активной и реактивной мощности | 1983 |
|
SU1121626A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Способ измерения активной и реактивной мощности | 1970 |
|
SU497530A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-03-20—Публикация
1991-01-08—Подача