Изобретение относится к электротехнике и может быть использовано при изготовлении контактного покрытия на контакт деталях магнитоуправляемых контактов (герконов), которые применяются в различных управляющих устройствах автоматики, телемеханики, сигнализации, связи, радиотехники и радиоэлектроники.
Известно контактное покрытие для магнитоуправляемых контактов, состоящее из рабочего слоя, выполненного из родия, и промежуточного слоя, выполненного из последовательно осажденных слоев золота, никеля, золота. [1]
Недостатком данного покрытия является высокая стоимость драгоценных металлов вследствие применения дорогостоящего родия, а также нетехнологичность при нанесении промежуточного слоя, состоящего из 3-х слоев металла.
Наиболее близким по технической сущности решением является контактное покрытие для магнитоуправляемых контактов, состоящее из рабочего слоя, выполненного из последовательно осажденных слоев рутения и золота. [2]
Однако предлагаемая контактная система имеет ряд недостатков. Данное покрытие не может быть использовано в герконах большой мощности, так как при коммутации больших токов из-за присутствия на контактных поверхностях рутения тонкой пленки мягкого золота может иметь места сварки контакт-деталей и отказ герконов по неразмыканию.
Задача изобретения заключается в уменьшении расхода золота и расширения диапазона эксплуатационных характеристик герконов.
Поставленная задача достигается тем, что на контакт-детали магнитоуправляемых контактов наносят контактное покрытие, состоящее из промежуточного слоя, выполненного из последовательно осажденных слоев никеля и золота, и рабочего слоя, выполненного из рутения. Кроме того, толщина рутения в рабочем слое составляет 0,5 3,0 мкм, золото толщиной 0,05 0,25 мкм и никель толщиной 0,5 2,0 мкм.
В технических решениях известных в науке и технике на сегодняшний день, раскрытие сущности этих признаков авторам неизвестен.Таким образом, предлагаемое техническое решение обладает новизной по сравнению с прототипом и существенными отличиями по сравнению с известными решениями.
Сущность изобретения заключается в том, что данное контактное покрытие обеспечивает работоспособность герконов: в режимах бестоковой конструкции, когда перенос материала с одного контакта на другой происходит в результате механической эрозии, при коммутации тока, когда создаются условия появления дугового разряда приводящего к так называемой мостиковой эрозии, при коммутации микротоков, когда основным требованием является стабильность переходного сопротивления.
Согласно настоящему изобретению толщина золота снижена с 0,75 до 0,05 - 0,25 мкм. Однако для того, чтобы предотвратить растрескивание рутениевого покрытия при использовании тонкого подслоя золота, предлагается осаждать его из электролита золочения с низким содержанием золота (1 3 г/л) при высоких плотностях тока (0,8 1,0 а/дм2).
Такое сочетание высокой плотности тока и низкой концентрации золота в электролите приводит к активации поверхности контакт-деталей и одновременному осаждению промежуточного слоя золота, исключающего пассивацию поверхности и служащего "грунтом сцепления" для рутениевого покрытия. Применение ванн золочения с низким содержанием золота одновременно приводит также к снижению расхода золота вследствие уменьшения неснижаемого запаса ванн.
Однако золото толщиной менее 0,1 мкм вследствие своей пористости не может предотвратить диффузию железа и никеля из материала контакта на поверхность рутения. Это может привести в процессе эксплуатации герконов к нестабильности переходного сопротивления.
Для предотвращения нежелательного явления предлагается применять под золотое покрытие слой никеля, который выполняет барьерную функцию и позволяет получать стабильное переходное сопротивление.
Кроме того, такое сочетание покрытия золото никель позволяет осаждать рутений толщиной до 3,0 мкм, что в свою очередь дает возможность расширить эксплуатационный диапазон коммутации герконов. Контактное покрытие получают последовательным осаждением металлов никеля толщиной 0,5 2,0 мкм, золота толщиной 0,05 0,25 мкм с последующим осаждением рутениевого покрытия толщиной 0,5 3,0 мкм.
Каждый слой несет свою функциональную нагрузку.
Подслой золота необходим для улучшения сцепления рутения с подслоем никеля. Верхний слой рутения выполняет роль рабочего контактного покрытия, имеющего твердость и температуру плавления, что весьма важно при использовании его для изготовления контактов, работающихв условиях эрозионного износа. Никель служит барьерным слоем, предотвращающим диффузию железа и никеля на контактную поверхность.
Указанные диапазоны толщин являются оптимальными при массовом производстве контактов. Толщина никеля менее 0,65 мкм не позволяет из-за большой пористости предотвратить диффузию железа на контактную поверхность.
Толщина покрытия более 2,0 мкм ухудшает эксплуатационные характеристики герконов из-за увеличения немагнитного зазора между контакт деталями.
Толщина золота менее 0,05 мкм не позволяет получать достаточно прочные сцепления с рутениевыми покрытиями, а более 0,25 мкм нецелесообразно из-за увеличения расхода драгметаллов.
Толщина рутения менее 0,5 мкм из-за большой пористости не обеспечивает устойчивости против электрической эрозии.
Применять толщину рутения более 3,0 мкм нецелесообразно из-за больших внутренних напряжений ограничения величин магнитного зазора в герконах, влияющего на магнитодвижущуюся силу отпускания и коэффициент возврата.
Пример: На контакт детали магнитоуправляемых контактов, выполненных из пермаллоя марки 52Н ВИ электрохимически наносят промежуточный слой, состоящий из никеля и золота, и рабочий слой контактного покрытия, состоящий из рутения.
Никель осаждают электрохимически из сернокислого электролита никелирования с применением нестационарных режимов электролиза, золото из лимонокислого электролита предварительного золочения, рутений из электролита на основе аммонийного бильдерного нитридного комплекса рутения.
Примеры использования предлагаемого контактного покрытия в герконах МКА
36701, МУКIА 1 с указанием состава и толщины слоев, а также требования технических условий к минимальной наработке и результаты испытаний герконов приведены в таблице.
Как видно из приведенных данных, герконов с предлагаемым контактным покрытием обеспечивает наработку во всех диапазонах предусмотренных ТУ: бестоковой коммутации, в режимах дугового разряда (0,25А 30В, 0,5 А 30В), при коммутации микротоков (10-6А 5•10-2 В).
название | год | авторы | номер документа |
---|---|---|---|
КОНТАКТНОЕ ПОКРЫТИЕ ДЛЯ МАГНИТОУПРАВЛЯЕМЫХ ГЕРМЕТИЗИРОВАННЫХ КОНТАКТОВ И СПОСОБ НАНЕСЕНИЯ КОНТАКТНОГО ПОКРЫТИЯ | 2001 |
|
RU2218627C2 |
КОНТАКТНОЕ ПОКРЫТИЕ ДЛЯ МАГНИТОУПРАВЛЯЕМЫХ КОНТАКТОВ | 1995 |
|
RU2079173C1 |
КОНТАКТНОЕ ПОКРЫТИЕ ДЛЯ МАГНИТОУПРАВЛЯЕМЫХ КОНТАКТОВ И СПОСОБ НАНЕСЕНИЯ КОНТАКТНОГО ПОКРЫТИЯ | 1992 |
|
RU2006091C1 |
КОНТАКТНОЕ ПОКРЫТИЕ МАГНИТОУПРАВЛЯЕМЫХ КОНТАКТОВ | 2004 |
|
RU2279149C1 |
КОНТАКТНОЕ ПОКРЫТИЕ МОЩНЫХ МАГНИТОУПРАВЛЯЕМЫХ КОНТАКТОВ (ВАРИАНТЫ) | 2001 |
|
RU2215342C2 |
СПОСОБ НАНЕСЕНИЯ РУТЕНИЕВОГО ПОКРЫТИЯ | 2001 |
|
RU2202006C2 |
Контактное покрытие магнитоуправляемых контактов | 1990 |
|
SU1718283A1 |
Способ изготовления контакт-детелей геркона | 1989 |
|
SU1734128A1 |
МАГНИТОУПРАВЛЯЕМЫЙ КОНТАКТ | 2011 |
|
RU2470401C1 |
МАГНИТОУПРАВЛЯЕМЫЙ ГЕРМЕТИЗИРОВАННЫЙ КОНТАКТ | 2010 |
|
RU2435243C1 |
Использование: область электротехники при изготовлении контактного покрытия на контакт-деталях магнитоуправляемых контактов (герконов), которые применяются в различных управляющих устройствах автоматики, телемеханики, сигнализации, связи, радиотехники и радиоэлектроники. Сущность изобретения заключается в том, что контактное покрытие для магнитоуправляемых контактов, состоящее из рабочего и промежуточного слоя, в котором рабочий слой выполнен из рутения, а промежуточный из последовательно осажденных слоев никеля и золота. Толщина слоя золота составляет 0,05 - 0,25 мкм, толщина слоя никеля 0,5 - 1,10 мкм, а толщина слоя рутения 0,5 - 3 мкм. 1 з. п. ф-лы, 1 табл.
Контактное покрытие для магнитоуправляемых контактов | 1986 |
|
SU1381614A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторское свидетельство СССР N 1568095, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-03-27—Публикация
1993-12-02—Подача