Изобретение относится к облагораживанию минералов, в частности бесцветных разновидностей полупрозрачного благородного серпентинита, к благородным серпентинитам относят мономинеральную горную породу, представляющую тонкозернистый агрегат лизардита или антигорита, с некоторой примесью хризотила (полиморфных модификаций серпентина), обладающую красивой яркой окраской (как правило, различными оттенками зеленой, реже белые, серые, кремовые), и просвечивающей в достаточно толстом слое 0,5 1 cм и более, а также улучшению цвета серпентинита с бледной серо-зеленой окраской.
В ювелирном и камнерезном производствах широко используется полупрозрачный благородный серпентинит, окрашенный в интенсивные зеленые тона (серпентиновый жад, бовенит, серпофит, офит) [1]
Известны также бесцветные полупрозрачные разновидности благородного серпентинита, которые используются в камнерезном деле при изготовлении бус, статуэток, столешниц и т.д. [2]
Известны полупрозрачные серпентиниты с различными природными окрасками: cерые, зеленовато-серые, буроватые. Из-за эстетической невыразительности окраски такие разности полупрозрачного серпентинита не используются в ювелирном и камнерезном производствах. Окраска благородного серпентинита связана с вхождением в структуру серпентина в октаэдрические позиции железа или никеля. Как показали наши исследования, природная окраска серпентинита с высокими содержаниями примеси железа практически не изменяется под воздействием ионизирующих облучений. Однако, для маложелезистых (содержания железа менее 0,1) разностей серпентина может быть получена насыщенная радиационная окраска. Она обуславливается электронно-дырочными центрами, связанными с вакансионными нарушениями кристаллической структуры минерала. При облучении такие дефекты захватывают носители заряда и преобразуются в центры окраски.
Известен способ изменения окраски минералов, в частности пренита [3] включающий гамма-облучение пренита дозой (0,7-1)*105 Грей и последующую термообработку при 150 180oC в течение 40 50 мин.
Способ разработан для пренита и кроме гамма-облучения включает операцию длительной термообработки.
Задачей изобретения является разработка способа облагораживания серпентинита, который позволил бы изменить окраску для применения его в ювелирных целях, расширить гамму окраски этого минерала более простым методом. В этом заключается новый технический результат, находящийся в причинно-следственной связи с существенными признаками изобретения.
Существенными признаками изобретения являются: гамма-облучение серпентинита дозой от 105 Грей до 3*55 Грей.
Отличительными признаками изобретения являются доза гамма-облучения, включающая интервал 105 3*105 Грей. При этом наводится розовая составляющая в окраске и серпентинит в зависимости от его исходного цвета приобретает насыщенную розовую либо дымчатую окраску.
Пример 1. Пластину полупрозрачного благородного серпентинита с насыщенной зеленой природной окраской подвергают γ-облучению дозой 3*105 Грей. В результате окраска серпентинита не претерпела визуально значимых изменений. Качественные показатели благородного серпентинита остались неизменными. Пропускание серпентинита до облучения (1) и после облучения (2) практически идентичны [фиг.1]
Пример 2. Пластину полупрозрачного серпентинита с природной серо-зеленой окраской подвергают g-облучению дозой 3*105 Грей. В результате пластина серпентинита приобретает визуально приятную дымчатую коричневато-серую окраску. Пропускание облученного серпентинита (2) в области 480 нм заметно ниже, чем пропускание исходного серпентинита (1) [фиг.2]
Пример 3. Пластину полупрозрачного бесцветного благородного серпентинита подвергают g-облучению дозой 3*105 Грей. В результате пластина серпентинита приобрела интенсивную розовую окраску. В спектре пропускания облученного серпентинита (2) появилась интенсивная полоса поглощения с максимумом при 480 нм [фиг. 3] В спектре пропускания исходного сорпентинита (1) данная полоса отсутствует. Таким образом, радиационная полоса поглощения при 480 нм обусловливает розовую окраску серпентинита.
Пример 4. Пластины полупрозрачного бесцветного и серо-зеленого серпентинита подвергают ступенчатому g-облучению дозами от 0,5*105 до 3*105 Грей. В результате после облучения дозой 2*105 Грей пластина бесцветного серпентинита приобретает насыщенную интенсивную розовую окраску. Пластина серо-зеленого серпентинита приобретает насыщенную дымчатую (коричневато-серую) окраску также при дозе 2*105 Грей. Дальнейшее увеличение дозы g-облучения окраску существенно не усиливает (табл.1).
Пример 5. Пластины благородного полупрозрачного серпентинита, окрашенные g-облучением, подвергались воздействию света в течение разных промежутков времени (табл.2). Интенсивность окраски не меняется.
Таким образом, гамма-облучение дозами в диапазоне от 105 до 3*105 Грей позволяет модифицировать окраску благородного полупрозрачного серпентинита бледно-зеленого, светло-серо-зеленого оттенков и бесцветных разностей, что существенно расширяет гамму окрасок благородного серпентина. Насыщение окраски достигается после облучения дозой 2*105 Грей.
Предлагаемый способ модифицирования окраски благородного серпентинита позволяет получить устойчивую к воздействию света новую окраску, чисто-розовую для бесцветных разностей и суперпозицию розового и зеленого оттенков для других бедно-окрашенных разностей. Существенным является то, что интенсивность наведенной окраски и ее оттенок можно регулировать путем варьирования дозой облучения. Способ простой, кроме радиационного воздействия не требует других технологических операций.
название | год | авторы | номер документа |
---|---|---|---|
Способ облагораживания пренита | 1990 |
|
SU1717677A1 |
Способ окраски природных минералов | 1990 |
|
SU1787112A3 |
Способ изменения окраски минералов | 1983 |
|
SU1117344A1 |
Способ изменения окраски минералов | 1989 |
|
SU1693136A1 |
СПОСОБ ПОИСКА ОКСИДНО-СУЛЬФИДНОГО МЕДНО-ПЛАТИНО-НИКЕЛЕВОГО БОЛЬШОПАТОВСКОГО ПРИПОЛЯРНО-УРАЛЬСКОГО МЕСТОРОЖДЕНИЯ | 1998 |
|
RU2149430C1 |
Способ диагностики природы окраски минералов | 1990 |
|
SU1784882A1 |
Способ окраски халцедонов и агатов | 1989 |
|
SU1673470A1 |
Способ изменения окраски минералов для ювелирных изделий | 1989 |
|
SU1693137A1 |
ФОТОЭЛЕКТРОХИМИЧЕСКОЕ УСТРОЙСТВО | 1995 |
|
RU2105087C1 |
СПОСОБ ПОЛУЧЕНИЯ ПАНОРАМНОГО ИЗОБРАЖЕНИЯ В РАСТРОВОМ ЭЛЕКТРОННОМ МИКРОСКОПЕ | 2000 |
|
RU2181515C2 |
Изобретение относится к облагораживанию минералов, в частности бесцветных разновидностей полупрозрачного благородного серпентинита, а также улучшению цвета серпентинита с бледной серо-зеленой окраской. Новый технический результат заключается в разработке способа облагораживания серпентинита, который позволяет изменить окраску серпентинита и расширить гамму окраски этого минерала более простым методом, что позволяет использовать его в ювелирном и камнерезном деле. Суть изобретения в том, что материал подвергается гамма-облучению дозой от 105 до 3*105 Грей. 3 ил., 2 табл.
Способ изменения окраски минералов, в частности благородного серпентита, включающий гамма-облучение исходного материала или готовых изделий, отличающийся тем, что гамма-облучение ведут дозой в интервале (1 3) • 105 Гр.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Куликов Б.Ф | |||
Словарь камней-самоцветов | |||
- Л.: Недра, 1982, с | |||
Пишущая машина | 1922 |
|
SU37A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Петров В.П | |||
Рассказы о поделочном камне | |||
- М.: Наука, 1982, с | |||
Счетная таблица | 1919 |
|
SU104A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Способ изменения окраски минералов | 1983 |
|
SU1117344A1 |
Способ обработки медных солей нафтеновых кислот | 1923 |
|
SU30A1 |
Авторы
Даты
1997-04-10—Публикация
1995-03-01—Подача