ТОКОВВОД ЭЛЕКТРОТЕРМИЧЕСКИХ ВЫСОКОАМПЕРНЫХ УСТРОЙСТВ Российский патент 1997 года по МПК H05B7/11 H05B3/60 

Описание патента на изобретение RU2083059C1

Изобретение относится к электротермии и предназначено для электропитания печей сопротивления прямого нагрева, таких, например, как печи графитации и печи для производства карбида кремния, а также других высокоамперных устройств.

Известен токоввод, включающий углеродный электрод и сопряженную с ним токоподводящую шину. Сопряжение осуществлено с помощью по крайней мере одной упругой металлической спирали.

Однако осуществление сопряжения в известном устройстве за счет упругой металлической спирали не позволяет обеспечить стабильность электроконтактного сопротивления при цикличности производственного процесса и влечен за собой значительный расход электроэнергии.

Наиболее близким к изобретению по технической сущности к заявляемому решению и принятым за прототип, является токоввод, включающий углеродный электрод, сопряженный с проводником (металлической шиной) посредством металлических шипов (электроконтактных пробок).

Сваривание шипа с проводником производится при заполнении углубления в электроде. Место контакта металлических шипов и проводников заглубляется ниже верхней поверхности электрода.

Однако известное устройство обладает значительным электросопротивлением и при его работе тратится большое количество электроэнергии. Это происходит из-за того, что в известном устройстве не обеспечивается непосредственный контакт по всей площади шипа с углеродным электродом, поскольку металлические шипы механически вставлены в тело углеродного электрода. При таком соединении не может быть обеспечен надежный контакт между ними, поскольку зазор неизбежен. В результате между металлом шипа и углеродистым материалом электрода имеется граница раздела. Это приводит к росту контактного сопротивления, что существенно повышает электросопротивление и приводит к высокому расходу электроэнергии.

Задача изобретения усовершенствование токоввода электротермических высокоамперных устройств, в котором за счет введения новых элементов в устройство и связей между ними осуществляется надежный электрический контакт между углеродным электродом и токоподводящей металлической шиной, что приведет к снижению электросопротивления в зоне сопряжения и за счет этого будет обеспечено снижение расхода электроэнергии в процессе работы устройства.

Задача решается тем, что в токовводе электротермических высокоамперных устройств, включающем углеродный электрод, сопряженный с токоподводящей металлической шиной посредством электроконтактных пробок, согласно предлагаемому изобретению, новым является то, что электроконтактные пробки вварены в углеродный электрод и снабжены компенсаторами, противоположные концы которых соединены с токоподводящей металлической шиной.

Совокупность конструктивных элементов предлагаемого устройства, находящихся во взаимосвязи друг с другом, приводит к качественному изменению свойств устройства и позволяет значительно снизить электросопротивление в зоне контакта, а также снизить расход электроэнергии.

Причинно-следственная связь между совокупностью заявляемых признаков и достигаемым результатом заключается в следующем.

Вваривание электроконтактных пробок в углеродный электрод сваркой позволяет осуществить сопряжение углеродного электрода и токоподводящей шины, сформировав контактную поверхность, при которой реальная площадь электроконтакта превышает значение ее номинальной площади.

Это происходит за счет того, что электроконтактный сплав, из которого выполнены ввариваемые пробки, в процессе сварки взаимодействует с материалом углеродного электрода, смачивает его и по открытым порам, увлекаемый капиллярными силами, проникает вглубь углеродного материала на 3 10 мм, создавая фазу, исключающую резкую границу раздела и обеспечивая непосредственный контакт двух материалов по всей площади соединений электроконтактной пробки с углеродным электродом. Это проникновение обеспечивает надежный контакт и резкое увеличение поверхности контакта. Развитая поверхность контакта влечет за собой снижение электросопротивления в зоне сопряжения углеродного электрода с токоподводящей металлической шиной.

Снижение электросопротивления в зоне сопряжения обеспечивается также за счет того, что электроконтактные пробки снабжены компенсаторами, противоположные концы которых соединены с токоподводящей металлической шиной.

Наличие компенсаторов позволяет:
осуществить надежное электрическое соединение в зоне сопряжения между углеродным электродом и металлической шиной;
защитить электроконтактные пробки от механических нагрузок вследствие изменения линейных размеров углеродного электрода и металлической шины при работе устройства в циклическом режиме (нагрев-охлаждение), поскольку их коэффициенты линейного расширения различаются несколько раз;
увеличить поверхностный теплообмен электроконтактных пробок с окружающей атмосферой, улучшить охлаждение электроконтактных пробок, так как компенсаторы представляют собой пакет металлических узких лент или металлических прутков и имеют развитую поверхность.

Таким образом, предлагаемое техническое решение позволяет снизить электросопротивление в зоне сопряжения, а также расхода электроэнергии при работе устройства.

На фиг. 1 изображен токоввод, вид сверху; на фиг. 2 вид по стрелке А.

Токоввод электротермических высокоамперных устройств состоит из углеродного электрода 1, токоподводящей металлической шины 2, электроконтактных пробок 3, вваренных в углеродный электрод, компенсаторов 4, прижимных шайб 5, шпильки 6 с гайками 7.

Для печи графитации электрод 1 может быть выполнен из графита размерами 50 x 400 x 1600 мм, токоподводящие металлические шины 2 из алюминия сечением 260 x 29 мм или 300 x 20 мм, прижимные шайбы 5, шпилька 6, гайки 7 из маломагнитной стали, электроконтактные пробки 3 диаметром 32 мм, глубиной 30 мм в количестве 14 шт. (для указанного электрода) из сплава на алюминиевой основе, компенсаторы 4 из алюминиевых полос или прутков.

Токоввод может быть выполнен следующим образом.

В графитированном электроде 1 с помощью кондуктора пневматической сверлильной машиной высверливают отверстия под электроконтактные пробки 3, которые вплавляют на специальном стенде с одновременным вплавлением в электроконтактные пробки 3 компенсаторов 4. При монтаже углеродного электрода 1 в торец печи производится его соединение с металлическими токоподводящими шинами 2 посредством электродуговой сварки компенсаторов 4 с металлическими шинами 2 и стяжки шин 2 с помощью прижимных шайб 5 и шпильки 6 с гайками 7.

На Днепровском электродном заводе в цехе графитации на опытной печи N 3о установлен токоввод, выполненный согласно предлагаемому изобретению. После 33-х производственных циклов среднее значение электросопротивления каждого электроконтакта опытной печи составило 84,2 мкОм, а на печи N 26,снабженной токовводом конструкции, эксплуатируемой в настоящее время на ДЭЗе 1698,8 мкОм, т. е. значение электросопротивления контактов опытной печи ниже в 20 раз их электросопротивления эксплуатируемой печи.

При этом среднее значение электросопротивления каждого из электроконтактов опытной печи N 30 и эксплуатируемой печи N 26 перед первым производственным циклом было примерно одинаковым и составляло около 50 мкОм.

Ведение производственного процесса на опытной печи с токовводом по заявляемому техническому решению позволяет экономить 141,3 кВт/ч. электроэнергии на каждой тонне графитизированной продукции.

Похожие патенты RU2083059C1

название год авторы номер документа
УГЛЕРОДНАЯ МАССА ДЛЯ САМООБЖИГАЮЩИХСЯ ЭЛЕКТРОДОВ 2004
  • Уразлина Ольга Юрьевна
  • Гриншпунт Александр Григорьевич
  • Малый Евгений Иванович
RU2255043C1
УСТРОЙСТВО ДЛЯ ПОДВОДА ТОКА К АНОДАМ МАГНИЕВОГО ЭЛЕКТРОЛИЗЕРА И СПОСОБ ЕГО МОНТАЖА 2004
  • Сизиков Игорь Анатольевич
  • Бабин Владимир Семенович
  • Костарев Владимир Александрович
  • Букин Илья Станиславович
RU2273684C1
ПЕЧЬ ЭЛЕКТРОКАЛЬЦИНАЦИИ СЫПУЧЕГО УГЛЕРОДНОГО МАТЕРИАЛА 2008
  • Патон Борис Евгеньевич
  • Лакомский Виктор Иосифович
  • Петров Борис Федорович
  • Кутузов Сергей Владимирович
  • Бондаренко Анатолий Васильевич
  • Хроменков Сергей Михайлович
  • Буряк Валерий Владимирович
  • Ревенок Леонид Федорович
  • Быковец Владимир Владимирович
RU2369815C1
ЭЛЕКТРОКОНТАКТНЫЙ УЗЕЛ ЭЛЕКТРОЛИЗЕРА ДЛЯ ПОЛУЧЕНИЯ МАГНИЯ 2005
  • Сизиков Игорь Анатольевич
  • Лакомский Виктор Иосифович
  • Пичак Владимир Григорьевич
  • Лебедев Владимир Александрович
  • Костарев Владимир Александрович
  • Некрасов Евгений Николаевич
  • Трифонов Виктор Иванович
RU2290459C1
ЭЛЕКТРОКОНТАКТНОЕ СОЕДИНЕНИЕ МАГНИЕВОГО ЭЛЕКТРОЛИЗЕРА 2005
  • Сизиков Игорь Анатольевич
  • Патон Борис Евгеньевич
  • Лакомский Виктор Иосифович
  • Пичак Владимир Григорьевич
  • Лебедев Владимир Александрович
  • Костарев Владимир Александрович
  • Некрасов Евгений Николаевич
  • Букин Илья Станиславович
RU2290456C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОКОНТАКТНОЙ ПРОКЛАДКИ (ВАРИАНТЫ) 2007
  • Ионов Сергей Геннадьевич
  • Павлов Александр Алексеевич
  • Савченко Денис Витальевич
  • Селезнев Анатолий Николаевич
  • Авдеев Виктор Васильевич
  • Фокин Владимир Петрович
  • Обыденная Нина Павловна
RU2343112C1
СПОСОБ ПОЛУЧЕНИЯ ГРАФИТИРОВАННЫХ ИЗДЕЛИЙ 2008
  • Кутузов Сергей Владимирович
  • Уразлина Ольга Юрьевна
  • Деркач Василий Васильевич
  • Голчанская Вера Моисеевна
RU2377178C1
УСТРОЙСТВО ДЛЯ ПОДВОДА ТОКА К ЭЛЕКТРОЛИЗЕРАМ С НИЖНИМ ВВОДОМ АНОДОВ ДЛЯ ПОЛУЧЕНИЯ МАГНИЯ 2005
  • Патон Борис Евгеньевич
  • Лакомский Виктор Иосифович
  • Пичак Владимир Григорьевич
  • Лебедев Владимир Александрович
  • Костарев Владимир Александрович
  • Шундиков Николай Александрович
  • Бабин Владимир Семенович
RU2285063C1
СПОСОБ ГРАФИТАЦИИ УГЛЕРОДНЫХ ИЗДЕЛИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Наумов Николай Анатольевич
  • Рыбянец Игорь Васильевич
  • Напрасник Максим Михайлович
  • Фисенко Владимир Викторович
RU2494963C2
СПОСОБ ГРАФИТАЦИИ 2004
  • Коржик Михаил Владимирович
  • Шилович Игорь Леонидович
  • Жученко Анатолий Иванович
  • Лелека Сергей Владимирович
  • Уразлина Ольга Юрьевна
  • Сасин Олег Аркадьевич
RU2263633C2

Иллюстрации к изобретению RU 2 083 059 C1

Реферат патента 1997 года ТОКОВВОД ЭЛЕКТРОТЕРМИЧЕСКИХ ВЫСОКОАМПЕРНЫХ УСТРОЙСТВ

Сущность изобретения: токоввод электротермических высокоамперных устройств включает углеродный электрод и сопряженную с ним токопроводящую металлическую шину. Сопряжение выполнено посредством дополнительно введенных электроконтактных пробок. Пробки вварены в углеродный электрод электродуговой сваркой. Электроконтактные пробки снабжены компенсаторами, а противоположные концы компенсаторов соединены с токоподводящей металлической шиной. 2 ил.

Формула изобретения RU 2 083 059 C1

Токоввод электротермических высокоамперных устройств, включающий углеродный электрод, сопряженный с токоподводящей металлической шиной посредством электроконтактных пробок, отличающийся тем, что пробки вварены в углеродный электрод и снабжены компенсаторами, противоположные концы которых соединены с токоподводящей металлической шиной.

Документы, цитированные в отчете о поиске Патент 1997 года RU2083059C1

Углеграфитовый электрод с метал-личЕСКиМ ТОКОпОдВОдОМ 1974
  • Матуев Борис Апполонович
  • Горох Михаил Николаевич
SU808560A1
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1
Соседов В.П
и др
Графитация углеродистых материалов
- М.: Металлургия, 1987, с
Парный автоматический сцепной прибор для железнодорожных вагонов 0
  • Гаврилов С.А.
SU78A1
Патент ФРГ N 479336, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 083 059 C1

Авторы

Овчинников Борис Иванович[Ua]

Лыков Владимир Андреевич[Ua]

Коротя Александр Сильвестрович[Ua]

Сапко Павел Павлович[Ua]

Остапенко Александр Тимофеевич[Ua]

Лакомский Виктор Иосифович[Ua]

Рогаткин Александр Алексеевич[Ua]

Литвиненко Николай Николаевич[Ua]

Кучеренко Александр Николаевич[Ua]

Усачев Николай Трофимович[Ua]

Даты

1997-06-27Публикация

1994-05-06Подача