Изобретение относится к области полупроводниковой электроники, использующей полупроводниковые соединения типа A3B5, такие как арсенид галлия, фосфид индия и твердые растворы на их основе; касается проблемы формирования омических контактов к перечисленным материалам и может быть использовано при разработке и изготовлении лазерных диодов, светодиодов и других приборов.
Известен способ получения омического контакта к структуре с локальными областями низколегированного полупроводника p-типа, включающий:
нанесение диэлектрической пленки на структуру;
формирование резистивной маски на диэлектрической (SiO2) пленке;
формирование полосковой полупроводниковой области (вскрытие диэлектрика);
удаление резистивной маски;
проведение диффузии цинка в полосковые области;
нанесение контакта с адгезионным слоем (Cr, Au) на планарную поверхность (App. Phys. Ltt. 41(5),1, September, 1982, pp. 485 487).
Использование диффузии примеси (Zn) в полосковые области повышает уровень концентрации основных носителей в полупроводнике, что дает возможность получить низкоомный омический контакт с помощью металлизации из CrAu.
К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, относится трудновоспроизводимость процесса диффузии, т.е. получение гарантированной глубины залегания цинка.
Другим аналогом получения омического контакта к лазерной структуре на основе арсенида галлия является способ по патенту Японии N2-13944, кл. H 01S 3/18, H01L 21/28, включающий:
осаждение контактного слоя (AuZn, Au);
формирование фоторезистивной маски;
травление металлизации для получения локальных контактов полосковой геометрии;
удаление фоторезистивной пленки;
термообработку при температуре образования контакта.
Этот способ дает возможность использовать любые контактные материалы, но травление искажает форму и размеры рабочих элементов.
В настоящее время для создания металлизации с определенной конфигурацией широко применяется метод "взрывной" фотолитографии.
Известен следующий способ получения металлизации к полупроводнику, включающий осаждение двуокиси кремния (на Si), нанесение алюминия, формирование элементов микрорисунка на алюминии, нанесение вспомогательного диэлектрического слоя Al2O3 толщиной 0,1 мкм, осаждение второго слоя алюминия, удаление диэлектрического слоя Al2O3 с осажденным на него слоем алюминия, т.е. проведение взрывной фотолитографии путем растворения вспомогательного диэлектрического слоя Al2O3 (Зарубежная электронная техника, 1987, май, 5 (312), стр. 23 патент Японии N52-12546).
Наиболее близким способом к заявленному прототипом является техническое решение, включающее нанесение на полупроводниковую структуру диэлектрической пленки из двуокиси кремния, формирование локальных областей под контакты с помощью резистивной маски, нанесение контактного материала, отжиг (G.H.Olsen Laser diodes For the 1,5 μk-2,0 μk Wave Length Rang J. of Optical Comnunications 2 (1981), pp. 11 19.
К причинам, препятствующим достижению требуемого технического результата при использовании известного способа, принятого за прототип, относится то, что он не обеспечивает надежности омических контактов к планарной стороне структуры, содержащей локальные области низколегированных полупроводников группы A3B5, сформированные в диэлектрической пленке (SiO2).
Сущность изобретения в следующем. Задача, на решение которой направлено заявляемое изобретение, заключается в повышении надежности омических контактов к планарной стороне структуры, содержащей локальные области низколегированных полупроводников группы A3B5, сформированные в диэлектрической пленке (SiO2).
Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе изготовления омических контактов, включающем нанесение на полупроводниковую структуру диэлектрической пленки из двуокиси кремния, формирование локальных областей под контакты с помощью резистивной маски, нанесение контактного материала, отжиг, отличающийся тем, что на пленку двуокиси кремния наносят вспомогательную диэлектрическую пленку из оксида европия, металлизацию первого уровня, обеспечивающую создание омического контакта к низколегированным полупроводникам A3B5 p- или n-типа (т.е. сплавы Au с легирующей акцепторной примесью Zn, Be, Mn для полупроводников p-типа; сплавы Au с легирующей донорной примесью Ge, Te, Sn - для полупроводников n-типа) и селективность травления относительно пленки оксида европия; формируют локальные контактные области "взрывной" фотолитографией путем растворения вспомогательной пленки из оксида европия под ненужными металлическими областями, наносят металлизацию второго уровня с адгезионным подслоем (из ванадия или хрома), а затем один из контактных материалов (Au, Ni, Al и другие).
Надежность контактов, полученных по предлагаемому способу, обеспечивается за счет использования двухуровневой металлизации. В качестве металлизации первого уровня служат сплавы на основе золота с легирующими примесями, создающими низкоомные контакты к полупроводниковым областям соединений A3B5 с низкой концентрацией: Au с акцепторной примесью Zn, Be, Mn для полупроводников p-типа;
Au с донорной примесью Ge, Sn, Te для полупроводников n-типа.
Создание нужной конфигурации локальных контактов осуществляется "взрывной" фотолитографией с помощью вспомогательного слоя, состоящего из диэлектрической пленки оксида европия.
Выбор оксида европия в качестве вспомогательного слоя обусловлен следующими причинами:
исключительной адгезией этого материала к полупроводнику (GaAs, InP) и пленке двуокиси кремния без применения высокотемпературного нагрева пластин в процессе напыления пленки;
легкостью растворения пленки, например, как в концентрированной, так и сильно разбавленной (1 10) соляной кислоте. Это обеспечивает селективность ее травления относительно полупроводников (указанных выше) пленки двуокиси кремния и металлизации первого уровня;
наличие маски из оксида европия (по сравнению с маской из фоторезиста) не ограничивает температуру нагрева пластин при напылении металлизации первого уровня, а также позволяет проводить операцию вжигания для формирования омического контакта в локальных полупроводниковых областях до снятия вспомогательного слоя, т.е. до проведения "взрывной" фотолитографии. Это обеспечивает хорошую адгезию сплавов на основе золота к полупроводниковой поверхности.
В результате этого после осуществления операции "взрыва" образуются четкие границы локальных контактных областей с заданной конфигурацией и размерами.
Так как сплавы на основе золота обладают неудовлетворительной смачиваемостью к диэлектрическим покрытиям, то после осуществления вжигания образуются разрывы в металлической пленке, что облегчает доступ травителя к пленке оксида европия в процессе проведения "взрывной" фотолитографии. В связи с этим вспомогательная пленка из диэлектрика может быть меньше или равняться толщине металлизации первого уровня.
Нанесение металлизации второго уровня, содержащей адгезионный слой, обеспечивает получение надежных покрытий как с локальными областями с металлизацией первого уровня, так и к диэлектрической пленке двуокиси кремния.
Суть изобретения поясняется описанием с примерами и графическим материалом, изображающим элементы эпитаксиальной меза-структуры после технологических операций, входящих согласно изобретению в предлагаемый маршрут изготовления омических контактов к планарной стороне, содержащей локальные области низколегированных полупроводников соединений A3B5 p- или n-типа, где на фигуре:
1 подложка из полупроводника A3B5 p- или n-типа;
2 эпитаксиальный слой низколегированного полупроводника группы A3B5 p- или n-типа;
3 пленка двуокиси кремния;
4 пленка оксида европия;
5 резистивная маска;
6 металлизация первого уровня (сплав с легирующей примесью);
7 металлизация второго уровня.
Пример 1. (Изготовление омического контакта к планарной стороне структуры, содержащей локальные области низколегированного соединения A3B5 p-типа, сформированные в диэлектрической пленке).
На эпитаксиальные структуры на основе InP с верхним низколегированным эпитаксиальным слоем 2 (фиг. "а") наносилась пленка двуокиси кремния 3 толщиной 0,3 мкм из газовой смеси моносилана с аргоном при температуре 450oC (фиг. "а").
На двуокись кремния наносилась вспомогательная пленка оксида европия 4 (фиг. "б") толщиной путем испарения в вакууме с помощью электронно-лучевого испарителя. Исходным материалом для получения пленок оксида европия служили специальные таблетки. Пластины перед напылением оксида европия прогревались до 100oC.
Затем на полученной структуре формировалась резистивная маска 5 (фиг. "в") с полосковыми окнами шириной 3 мкм, с помощью которой осуществлялось травление диэлектрических пленок. Пленка оксида европия травилась в растворе HCl H2O (1 10), а двуокись кремния в травителе из HF NH4F (40%) (1 9). После травления структура принимала вид, соответствующий фиг. "г". Затем следует удаление резистивной маски в диметилформамиде с моноэтаноламином и структура принимает вид, представленный на фиг. "д".
Далее наносилась металлизация первого уровня 6 из сплава золота с цинком AuZn (90 10), создающая омический контакт к низколегированному соединению A3B5 p-типа, что отражено на фиг. "е". Толщина пленки сплава составляла 0,1 мкм. После этого проводилась операция вжигания в среде водорода при температуре 450oC в течение 1 мин. Затем осуществлялась "взрывная" фотолитография путем растворения вспомогательного слоя оксида европия в растворе HCl H2O (1 10). В результате этого формировались контакты к полосковым областям, образованным в пленке двуокиси кремния, что отражено на фиг. "ж".
Следующей операцией была металлизация второго уровня 7, состоящая из нанесения адгезионного подслоя ванадия V ( ) и золота Au (0,5 мкм), при нагреве пластин до 200oC, обеспечивающая надежное покрытие как к металлизации первого уровня (AuZn), так и к пленке двуокиси кремния. В готовом виде структура представлена на фиг. "з".
Пример 2. Изготовление контактов к планарной стороне структуры, содержащей локальные области низколегированного соединения A3B5 n-типа, сформированные в диэлектрической пленке.
На эпитаксиальные структуры на основе InP с верхним эпитаксиальным слоем 2 (фиг. "а") наносилась пленка двуокиси кремния 3 толщиной 0,3 мкм из газовой смеси моносилана с аргоном при температуре 450oC (фиг. "а"). На двуокись кремния наносилась вспомогательная пленка оксида европия 4 толщиной примерно 0,1 мкм путем испарения в вакууме с помощью электронно-лучевого испарителя на пластины, нагретые до 100oC (фиг. "б").
Затем на полученной структуре формировалась резистивная маска 5 с полосковыми окнами шириной примерно 3 мкм (фиг. "в"), с помощью которой осуществлялось травление диэлектрических пленок. Пленка оксида европия травилась в растворе HCl H2O (1 10), а двуокись кремния в травителе из HF NH4F (40%) (1 9). После травления структура принимает вид, соответствующий фиг. "г". Затем следует удаление резистивной маски в диметилформамиде с моноэтаноламином (фиг. "д"), после чего наносилась металлизация первого уровня 6 из сплава AuGeNi (80 10 10), создающая омический контакт к низколегированному соединению A3B5 n-типа (фиг. "а"). Толщина пленки составляла 500 За металлизацией следовало вжигание контакта при T 450oC в течение 1 мин в среде водорода. После этого осуществлялась "взрывная" фотолитография путем растворения вспомогательного слоя оксида европия в растворе (1 10), в результате чего формировались контакты к полосковым областям, образованным в пленке двуокиси кремния (фиг. "ж"). На полученную структуру наносилась металлизация второго уровня 7, состоящая из адгезионного подслоя ванадия и золота 0,5 мкм при нагреве пластин до 200oC, обеспечивающая надежное покрытие как к металлизации первого уровня (AuGeNi), так и к пленке двуокиси кремния (фиг. "з").
Пример 3. Изготовление контактов к планарной стороне структуры, содержащей локальные области низколегированного соединения из GaAs p-типа.
На структуру с верхним эпитаксиальным слоем из арсенида галлия 2 (фиг. "а") наносилась пленка двуокиси кремния 3 толщиной 0,35 мкм из газовой смеси моносилана с аргоном при температуре 450oC (фиг. "а"). На двуокись кремния наносилась вспомогательная пленка оксида европия 4 толщиной ≃ 0,1 мкм путем испарения в вакууме с помощью электронно-лучевого испарителя на пластины, нагретые до 100oC (фиг. "б").
Затем на полученной структуре формировалась резистивная маска 5 с полосковыми окнами шириной ; 3 мкм (фиг. "в"), с помощью которой осуществлялось травление диэлектрических пленок. Пленка оксида европия травилась в растворе HCl H2O (1 10), а двуокись кремния в травителе из HF NH4F (40%) (1 9). После травления структура принимает вид, соответствующий фиг. "г". Затем резистивная маска удалялась в смеси диметилформамида с моноэтаноламином (фиг. "д"), после чего наносилась металлизация первого уровня 6, состоящая из сплава AuZn (90 10), создающая низкоомной контакт к арсениду галлия (фиг. "е"). Толщина пленки составляла
Далее следовал отжиг полученной системы при температуре 450oC в течение 1 мин в среде водорода, после чего осуществлялась "взрывная" фотолитография путем растворения вспомогательного слоя оксида европия в растворе HCl H2O (1 10), в результате чего формировались контакты к полосковым областям, образованным в пленке двуокиси кремния (фиг. "ж"). После этого на полученную структуру наносилась металлизация второго уровня 7, состоящая из адгезионного подслоя хрома толщиной и пленки золота толщиной 0,4 мкм при нагреве пластин до 250oC, обеспечивающая надежное покрытие как к металлизации первого уровня (AuZn), так и к пленке двуокиси кремния (фиг. "з").
Пример 4. Изготовление контактов к планарной стороне структуры, содержащей локальные области низколегированного арсенида галлия n-типа.
На структуру с верхним эпитаксиальным слоем из арсенида галлия n-типа 2 (фиг. "а") наносилась пленка двуокиси кремния 3 толщиной 0,35 мкм из газовой смеси моносилана с аргоном при температуре 450oC (фиг. "а"). На двуокись кремния наносилась вспомогательная пленка оксида европия 4 толщиной 0,1 мкм путем испарения в вакууме на пластины, нагретые до 100oC (фиг. "б"). Затем на полученной структуре формировалась резистивная маска 5 с полосковыми окнами шириной 3 мкм (фиг. "в"), с помощью которой осуществлялось травление диэлектрических пленок. Пленка оксида европия травилась в растворе HCl H2O (1 10), а двуокись кремния в травителе из HF NH4F (40%) (1 9). После травления структура принимает вид, соответствующий фиг. "г". После удаления резистивной маски в смеси диметилформамида с моноэтаноламином (фиг. "д") на пластины наносилась металлизация первого уровня 6, состоящая из сплава AuGe (90 10) толщиной создающая низкоомный контакт к арсениду галлия n-типа (фиг. "е"). Далее следовал отжиг системы при T 450oC в течение 1 мин в среде водорода, после чего осуществлялась "взрывная" фотолитография путем растворения вспомогательного слоя оксида европия в растворе HCl H2O (1 10). В результате этого формировались контакты к полосковым областям, образованным в пленке двуокиси кремния (фиг. "ж"). Затем на полученную структуру наносилась металлизация второго уровня 7, состоящая из подслоя ванадия толщиной и пленки никеля толщиной 0,1 мкм при нагреве пластин до 250oC, обеспечивающая надежное покрытие как к металлизации первого уровня (AuGe), так и к пленке двуокиси кремния.
В таблице приведены сравнительные данные по выходу годных пластин после операции изготовления омических контактов по заявленному способу и базовому способу (032.917 МК, 035.063 ТК).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ МЕЗА-СТРУКТУРЫ ПОЛОСКОВОГО ЛАЗЕРА | 2016 |
|
RU2647565C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ЭЛЕМЕНТА НА ОСНОВЕ ГЕРМАНИЯ | 2008 |
|
RU2377698C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ ГЕРМАНИЯ | 2008 |
|
RU2377697C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ T-ОБРАЗНОГО ГАЛЬВАНИЧЕСКОГО ЗАТВОРА В ВЫСОКОЧАСТОТНОМ ПОЛЕВОМ ТРАНЗИСТОРЕ | 2020 |
|
RU2746845C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОМПОНЕНТОВ СВЧ-МОЩНЫХ ТРАНЗИСТОРНЫХ МИКРОСБОРОК | 1991 |
|
RU2017271C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СОЛНЕЧНОГО ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ | 2010 |
|
RU2437186C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА | 1992 |
|
RU2031483C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА С УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ СУБМИКРОННОЙ ДЛИНЫ | 1991 |
|
RU2031481C1 |
СПОСОБ СОЗДАНИЯ СГЛАЖЕННОГО РЕЛЬЕФА В ИНТЕГРАЛЬНЫХ СХЕМАХ | 1990 |
|
SU1766214A1 |
СПОСОБ ИЗГОТОВЛЕНИЯ МОЩНЫХ СВЧ ТРАНЗИСТОРНЫХ СТРУКТУР СО СТАБИЛИЗИРУЮЩИМИ ЭМИТТЕРНЫМИ РЕЗИСТОРАМИ | 1991 |
|
RU2024994C1 |
Использование: при разработке и изготовлении лазерных диодов, светодиодов и других приборов. Сущность: способ включает нанесение на полупроводниковую структуру диэлектрической пленки из двуокиси кремния, нанесение вспомогательного диэлектрического слоя, формирование локальных областей под контакты с помощью резистивной маски, нанесение контактного материала первого уровня, формирование локальных металлических контактов "взрывной" фотолитографией путем растворения вспомогательного диэлектрического слоя под ненужными металлическими областями. В качестве вспомогательного диэлектрического слоя наносят пленку оксида европия (Eu2O3), в качестве металлизации первого уровня наносят сплавы, обеспечивающие создание омических контактов к низколегированным полупроводникам A3B5 или p-типа (Au : Zn (Be, Mn) - для p-типа, (Au : Ge (Te, Sn) -для n-типа и селективность травления относительно пленки оксида европия, которые подвергаются отжигу, а в качестве металлизации второго уровня наносят адгезионный подслой из ванадия (V) или хрома (Cr), а затем один из контактных материалов: Au, Ni, Al и другие. 2 з.п. ф-лы, 1 ил., 1 табл.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Appl | |||
Phys | |||
Zett., 41(5), 1 September, 1982, р.485-487 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
0 |
|
SU213944A1 | |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Зарубежная электронная техника, 1987, май, 5 (312), с.23 | |||
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
G.H | |||
Olsen | |||
Zaser diodes for Rang | |||
J | |||
of Optical communications, 2, 1981, р.11-19. |
Авторы
Даты
1997-07-20—Публикация
1993-05-07—Подача