Изобретение относится к области двигателестроения.
Известна камера сгорания газотурбинного двигателя Д-30 конструкция которой отличается высокой технологичностью и малым весом, однако, система охлаждения имеет низкую эффективность, а использование хладоресуса охлаждающего воздуха не превышает 5% что существенно ухудшает температурное состояние камеры сгорания [1]
Известна также конструкция камеры сгорания газотурбинной установки, содержащая диффузор и жаровую трубу, стенка которой состоит из отдельных элементов, каждая из которых представляет собой пластинчатое тело с охлаждаемыми внутренними каналами, на одном конце соединенными с воздушной полостью диффузора, а на другом конце с газовой полостью жаровой трубы [2]
Недостатком известной конструкции является низкая эффективность охлаждения стенки жаровой трубы в зоне охлаждаемых каналов из-за отсутствие устойчивого циклонного вихря охлаждающего воздуха, а также возникновения напряжений в результате неравномерности охлаждения поверхностей стенки.
Цель изобретения повышение эффективности и равномерности сегментов жаровой трубы камеры сгорания, обращенных к газовой полости, за счет организации циклонных потоков охлаждающего воздуха.
На фиг.1 показана камера сгорания, продольный разрез; на фиг.2 узел I на фиг. 1; на фиг.3 узел II на фиг.2; на фиг.4 вид А на фиг.3.(показано расположение тангенциальных каналов сегментов); на фиг.5 узел II на фиг.2 вариант выполнения циклонных полостей с иным расположением тангенциальных каналов).
Камера сгорания 1 состоит из диффузора 2 с расположенной в воздушной полости 3 диффузора 2 жаровой трубой 4, состоящей из отдельных сегментов 5, закрепленных на диффузоре 2 с помощью радикальных стоек 6. Жаровая труба 4 содержит газовую полость 7, в которой от входа жаровой трубы к выходу течет газовый поток 8. Сегмент 5 содержит последовательно расположенные циклонные полости 9, соединенные между собой тангенциальными каналами 10. Для облегчения изготовления диаметр Д всех циклонных полостей выполнен одинаковым. Для подвода охлаждающего воздуха в первую циклонную полость сегмента 5 со стороны воздушной полости 3 выполнено отверстие 11, а для выхода отверстие (щель) 12, через которое воздух подается в газовую полость 7. Тангенциальные каналы 10 полостей 9 расположено в виде геометрической фигуры, охватывающей окружность 13, Ось этой окружности равноудалена от охлаждаемой поверхности 14.
Устройство работает следующим образом.
Из воздушной полости 3 поток охлаждающего воздуха через отверстие 11 поступает в циклонную полость 9, где совершает многократное циклонное вращение, омывая и охлаждая внутреннюю поверхность 13 первой по ходу воздуха полости 9. В результате конвективной теплоотдачи происходит охлаждение поверхности 14, обращенной к газовой полости 7. Далее воздух по тангенциальным каналам 10 поступает в следующую по ходу воздуха циклонную полость, где, вращаясь многократно, охлаждает ее поверхность 13. Воздух, выходя из последней циклонной полости, попадает в щель 12, образуя пленочное заграждение, обеспечивающее охлаждение поверхности 14 сегмента 5 со стороны газового потока 8.
Таким образом максимально используются хладоресурс охлажденного воздуха, обеспечивая равномерное охлаждение сегментов жаровой трубы камеры сгорания.
название | год | авторы | номер документа |
---|---|---|---|
ЖАРОВАЯ ТРУБА КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1994 |
|
RU2062954C1 |
КАМЕРА СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 1999 |
|
RU2173818C2 |
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ | 1999 |
|
RU2159347C1 |
КАМЕРА СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2002 |
|
RU2215241C2 |
СЕКЦИЯ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ | 1990 |
|
RU2023187C1 |
ЖАРОВАЯ ТРУБА КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2006 |
|
RU2343355C2 |
ТРУБЧАТО-КОЛЬЦЕВАЯ КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ | 1997 |
|
RU2141077C1 |
Кольцевая камера сгорания газотурбинного двигателя | 2023 |
|
RU2826197C1 |
КАМЕРА СГОРАНИЯ ТУРБОМАШИНЫ | 2001 |
|
RU2215242C2 |
ТРУБЧАТО-КОЛЬЦЕВАЯ КАМЕРА СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2001 |
|
RU2211409C2 |
Использование: в двигателестроении. Сущность изобретения: из воздушной полости 3 камеры сгорания поток охлаждающего воздуха через отверстие 11 поступает в циклонную полость 9, где совершает циклическое вращение, омывая и охлаждая внутреннюю поверхность 13 первой по ходу воздуха полости 9. В результате конвективной теплоотдачи происходит охлаждение поверхности 14, обращенной к газовой полости 7. Далее воздух по тангенциальным каналам 10 поступает в следующую по ходу воздуха циклонную полость, где, вращаясь, многократно охлаждает ее поверхность 13. Воздух, выходя из последней циклонной полости, попадает в щель 12, образуя пленочное заграждение, обеспечивающее охлаждение поверхности 14 сегмента 5 со стороны газового потока 8. 1 з.п. ф-лы, 5 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ обработки медных солей нафтеновых кислот | 1923 |
|
SU30A1 |
Техническое описание | |||
- М.: Машиностроение, 1971, с | |||
Способ смешанной растительной и животной проклейки бумаги | 1922 |
|
SU49A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Заявка ЕПВ N 0225527, кл | |||
Прибор для равномерного смешения зерна и одновременного отбирания нескольких одинаковых по объему проб | 1921 |
|
SU23A1 |
Авторы
Даты
1997-07-27—Публикация
1994-04-28—Подача