СПОСОБ ОБНАРУЖЕНИЯ ЖИВЫХ МИКРООРГАНИЗМОВ Российский патент 1997 года по МПК C12N1/00 

Описание патента на изобретение RU2086643C1

Изобретение относится к биофизике, а более конкретно к оптическим биосенсорам.

В настоящее время все живые микроорганизмы в жидкости регистрируются наблюдением посредством оптического микроскопа методами биолюминенсенции селективного окрашивания. Общим недостатком этих методов является низкая степень автоматизации измерений.

Наиболее близким к предлагаемому способу является оптический способ обнаружения подвижных микроорганизмов (прототип) путем измерения коэффициентов диффузии рассеивающих центров. В этом способе лазерное излучение проходит через исследуемую жидкость, рассеивается находящимися в жидкости частицами (броуновское движение) и подвижными микроорганизмами. Рассеянное излучение, интерферируя в плоскости наблюдения, формирует динамическую спектр-картину, фурье-спектр флуктуаций интенсивности которой регистрируется. По полуширине этого спектра вычисляют коэффициент-диффузии и по его величине определяют наличие подвижных микроорганизмов.

Однако для того, чтобы отличить ПМ от БЧ, необходимо иметь априорную информацию о размерах исследуемых частиц, что снижает применимость метода. Например, при низкой подвижности ПМ или при БЧ малого размера различить спектры не удается. Кроме того, требуется измерение фурье-спектра с высокой точностью, что затрудняет и удорожает создание приборов, работающих в реальном времени.

Предлагаемый способ позволяет преодолеть указанные недостатки путем измерения средней интенсивности флуктуаций спекл-картины в ограниченном снизу частотном диапазоне, связанной как с концентрацией броуновских частиц (БЧ), так и с подвижностью микроорганизмов (ПМ). Одновременно известным способом измеряется мутность исследуемой среды, связанная только с концентрацией БЧ и ПМ, но не зависящая от подвижности ПМ. Это позволяет различить в выходном сигнале вклады от концентрации БЧ и ПМ от вклада, связанного с подвижностью микроорганизмов. Ограничение частотного диапазона снизу позволяет уменьшить вклад в выходном сигнале от концентрации БЧ, чей спектр лежит в низкочастотной области и мало изменяет сигнал, связанный с подвижностью микроорганизмов, лежащий в более высокочастотной области. Это позволяет повысить чувствительность способа при обнаружении малых сигналов от ПМ на фоне большого сигнала от БЧ. Предлагаемый способ проще, поскольку не требуется информации о размерах частиц и измерения фурье-спектра.

На фиг. 1 представлены типичные амплитудно-частотные спектры выходных сигналов, где 1-фуpье-спектp БЧ, 2-фурье-спектр ПМ; на фиг. 2 интегральные величины, измеряемые в предлагаемом способе, где 3 амплитудно-частотная характеристика ограничения спектра снизу, область 4 интегральный сигнал Uвых1 для БЧ, область 5 интегральный сигнал Uвых для БЧ + ПМ; на фиг.3 зависимость сигнала Uвых1 от мутности жидкости Т (сплошная линия), где ΔU вклад в выходной сигнал, обусловленный подвижностью микроорганизмов.

Способ реализуется следующим образом.

Лазерное излучение, проходя через исследуемую жидкость, рассеивается частицами в жидкости и, интерферируя в плоскости фотоприемника, образует динамическую спекл-картину. Амплитудно-частотный спектр флуктуаций фототока представляет лоренцевскую линию

где U напряжение на фотоприемнике;
U0 множитель, имеющий размерность напряжения;
Δω полушиpина лоренцевской линии;
w текущая частота;
Δω ~ D•sin2Φ где v угол наблюдения;
D -коэффициент диффузии рассеивающих частиц, для БЧ D обратно пропорционален их радиусу r:

а для ПМ D пропорционально корню из их скорости v

Для ПМ D больше, чем для БЧ, что позволяет обнаружить подвижные микроорганизмы в жидкости. На фиг. 1 представлены лоренцевские спектры (1) для БЧ и ПМ 2 с большой подвижностью в предположении их одинаковой концентрации и размеров. При этом площади под соответствующими кривыми одинаковы, а U _→ ∞ при ω = 0 и Δω _→ 0 При наличии в исследуемой среде одновременно БЧ и ПМ результирующий спектр является суперпозицией спектров, приведенных на фиг. 1. При ограничении снизу частотного спектра измеряемого сигнала Uвых регистрируемая интенсивность для БЧ уменьшается значительно сильней, чем для ПМ (области 4 и 5 соответственно на фиг.2), поскольку большая часть БЧ -спектра расположена в низкочастотной области. Нижняя граничная частота выбиралась вблизи типичного для БЧ, размером около микрона и составляла 1-10 Гц. Конкретное ее значение не является критичным параметром. При этом Uвых1 БЧ -спектра определяется независимо путем измерения мутности среды. Это поясняется на фиг. 3, на которой представлена экспериментальная зависимость Uвых1(Т) средней амплитуды флуктуаций спекл-картины от мутности среды Т при наличии в ней только БЧ (сплошная линия). Мутность Т измерялась фотоприемником по интегральной интенсивности рассеянного света и также имела размерность напряжения. Тогда при наличии в среде только БЧ
Uвых1=К•Т (4)
где К коэффициент пропорциональности, постоянный для данной реализации способа. В реальной среде с наличием как БЧ так и ПМ в измеряемом сигнале U удается различить вклад ПМ как превышение U над (4)
Uвых = Uвых1 + ΔU (5)
Наличие ΔU и ее величина характеризует наличие ПМ и их активность в исследуемой среде (см. фиг.3). Относительный вклад сигнала от ПМ можно характеризовать также отношением ΔU/Uвых.
Чувствительность предлагаемого способа выше по сравнению с прототипом, поскольку возможно выделить "чистый" вклад от ПМ в регистрируемом сигнале; в прототипе же регистрируется только суммарный спектр от БЧ и ПМ. В наших экспериментах чувствительность ΔU/Uвых составила около 10%
С целью обнаружения динамических процессов, связанных как с подвижными, так и не самодвижущимися, но живыми микроорганизмами (например, процессы деления), измерялись первые и более высокие производные dUвых/dt, характеризующие например, скорость изменения концентраций живых микроорганизмов.

Таким образом, предлагаемый способ работоспособен и промышленно применим.

Похожие патенты RU2086643C1

название год авторы номер документа
ДЕТЕКТОР ПОДВИЖНЫХ МИКРООРГАНИЗМОВ 1998
  • Растопов С.Ф.
  • Агеев В.Г.
RU2143487C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Растопов С.Ф.
RU2170438C2
СПОСОБ ИЗМЕРЕНИЯ РАССТОЯНИЯ ДО ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Растопов С.Ф.
RU2144203C1
ОПТИЧЕСКИЙ СПОСОБ РЕГИСТРАЦИИ КИНЕТИКИ АГРЕГАЦИИ ЧАСТИЦ В МУТНЫХ СУСПЕНЗИЯХ 2012
  • Волков Алексей Юрьевич
  • Гурьев Александр Сергеевич
  • Левин Александр Давидович
  • Ниязматов Агзамджан Ахтамович
  • Растопов Станислав Федорович
RU2516193C2
СПОСОБ РАСТРОВОГО ОПТИЧЕСКОГО ИЗМЕРЕНИЯ СКОРОСТИ ОБЪЕКТА 2010
  • Растопов Станислав Федорович
RU2482499C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПТИЧЕСКОГО ИЗМЕРЕНИЯ РАСПРЕДЕЛЕНИЯ РАЗМЕРОВ И КОНЦЕНТРАЦИЙ ДИСПЕРСНЫХ ЧАСТИЦ В ЖИДКОСТЯХ И ГАЗАХ С ИСПОЛЬЗОВАНИЕМ ОДНОЭЛЕМЕНТНЫХ И МАТРИЧНЫХ ФОТОПРИЕМНИКОВ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 2012
  • Певгов Вячеслав Геннадьевич
  • Певгова Наталья Вячеславовна
RU2525605C2
Оптический способ измерения концентрации и морфологии частиц в широком диапазоне мутностей и устройство для его реализации 2018
  • Волков Алексей Юрьевич
RU2672534C1
УСТРОЙСТВО ДЛЯ ДИАГНОСТИКИ 2005
  • Петрова Галина Петровна
  • Петрусевич Юрий Михайлович
  • Сысоев Николай Николаевич
  • Корнилова Альбина Александровна
  • Ким Санг Ра
  • Иванов Андрей Валентинович
  • Певгов Вячеслав Геннадьевич
RU2408280C2
ЛАЗЕРНЫЙ АНАЛИЗАТОР МИКРОЧАСТИЦ И БИОЛОГИЧЕСКИХ МИКРООБЪЕКТОВ 2000
  • Соболев В.С.
  • Уткин Е.Н.
  • Прокопенко М.Н.
  • Щербаченко А.М.
  • Столповский А.А.
  • Скурлатов А.И.
RU2186362C1
ОПТОВОЛОКОННЫЙ ИЗМЕРИТЕЛЬ РАСПРЕДЕЛЕНИЯ РАЗМЕРОВ И КОНЦЕНТРАЦИЙ НАНОЧАСТИЦ В ЖИДКОСТЯХ 2009
  • Певгов Вячеслав Геннадьевич
RU2414693C2

Иллюстрации к изобретению RU 2 086 643 C1

Реферат патента 1997 года СПОСОБ ОБНАРУЖЕНИЯ ЖИВЫХ МИКРООРГАНИЗМОВ

Изобретение относится к оптическим биосенсорам и позволяет с высокой чувствительностью обнаруживать наличие подвижных микроорганизмов /ПМ/ в жидкости даже в присутствии большого количества броуновских частиц. Сущность изобретения: измеряют среднюю амплитуду флуктуаций интенсивности рассеянного на частицах в жидкости лазерного излучения, которая пропорциональна как концентрации, так и подвижности частиц. Измеряют мутность жидкости, которая пропорциональна только концентрации частиц, и по сравнению обоих сигналов определяют наличие ПМ в жидкости. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 086 643 C1

1. Способ обнаружения живых микроорганизмов, включающий пропускание лазерного излучения через анализируемую пробу, измерение параметра, характеризующего амплитудно-частотный спектр флуктуации рассеянного лазерного излучения в пробе, отличающийся тем, что дополнительно измеряют параметр, характеризующий мутность пробы, а параметр, характеризующий амплитудно-частотный спектр флуктуации рассеянного лазерного излучения, измеряют при ограничении нижнего предела диапазона частот, а о наличии живых микроорганизмов судят, сравнивая измеренные параметры. 2. Способ по п.1, отличающийся тем, что нижний предел диапазона частот устанавливают с учетом полуширины линии Лоренца. 3. Способ по п.1, отличающийся тем, что дополнительно вычисляют производные измеренных параметров.

Документы, цитированные в отчете о поиске Патент 1997 года RU2086643C1

Спектроскопия оптического смешения и корреляции фотонов/Под ред
Г.Камминса и Э.Пайка
- М.: Мир, 1978, с.287-331.

RU 2 086 643 C1

Авторы

Агеев Владимир Геннадьевич

Растопов Станислав Федорович

Даты

1997-08-10Публикация

1995-12-09Подача