СПОСОБ УДАЛЕНИЯ КИСЛОТНЫХ ГАЗОВ, ТАКИХ, КАК СЕРОВОДОРОД И/ИЛИ ДВУОКИСЬ УГЛЕРОДА Российский патент 1997 года по МПК B01D53/14 B01D53/52 B01D53/62 

Описание патента на изобретение RU2087181C1

Изобретение относится к способу удаления кислотных газов, таких как сероводород или/и двуокись углерода из газообразной смеси путем абсорбции.

Удаление сероводорода и/или двуокиси углерода является известной проблемой в промышленности, которая еще не нашла обоснованного экономического и эффективного решения. Его возможные применения многочисленны, главным, но не единственным примером является обработка природного газа. Двуокись углерода является инертным компонентом такого газа, который может быть удален из газа по существу вплоть до пределах, который налагается требуемой теплотворностью и индексом Wobbe. Начальная загрузка газа может содержать вплоть до нескольких десятков процентов (по объему) двуокиси углерода, после обработки его содержание составляет от 1 до 3%
Удаление сероводорода должно быть очень тщательным, чтобы гарантировать потребителю отсутствие в газе токсичных и агрессивных компонентов. Начальная загрузка может содержать вплоть до нескольких процентов (по объему) сероводорода, газ после обработки должен содержать не более чем 1 3 ppm сероводорода.

Использование абсорбционных способов (физических или химических) хорошо известно в области удаления кислотных газов, таких как двуокись углерода и сероводород, из газообразных смесей. Для простоты описания способы известные в литературе, могут быть классифицированы согласно типу используемого растворителя.

а/ Органические соединения различных типов, таких как спирты, амиды, лактамы, полигликоли, полиэфиры и т.п. Эти типы растворителя используются в основном тогда, когда парциальное давление кислотного газа высокое.

b/ Водные растворы первичных и вторичных аминов, таких как МЭА или ДЭА. Этот тип растворителя используется тогда, когда парциальное давление кислотного газа низкое и должны удовлетворяться очень жесткие спецификации.

с/ Водные растворы щелочных карбонатов, возможно активированные веществами, такими как амины, бораты, аминокислоты и т.п. Этот тип растворителя обычно используется для удаления больших количеств кислотного газа при высоком парциальном давлении. Особенно интересные результаты могут быть получены, если также присутствуют активаторы.

Промышленные процессы удаления кислотных газов путем абсорбции характеризуются в основном двумя значениями, определяемыми как капиталовложения и текущие расходы на единицу удаляемого кислотного газа. Капиталовложения в основном пропорциональны размеру абсорбционной и регенерационной колонн, включая подогреватель и конденсатор, и отсюда количеству растворителя, которое используется. Текущие расходы в основном пропорциональны количеству тепла, требуемому для регенерации растворителя. Они также выше, чем большее количество растворителя расходуется, т.к. большее количество энергии потребляется для его перекачки.

Растворители типа а/ характеризуются низкими текущими расходами на единицу удаляемого кислотного газа, но также характеризуются высокими капиталовложениями в особенности при низком парциальном давлении, т.к. кислотная загрузка невысокая.

Растворители типа b/ характеризуются высокими текущими расходами, т.к. на стадии абсорбции они приводят к образованию карбаматов в присутствии двуокиси углерода. Обратная реакция, проводимая в регенерационной колонне, несомненно эндотермична и отсюда стоимость выше.

Растворители типа с/ характеризуются более низкими текущими расходами, чем типа b/, т.к. они приводят к образованию бикарбонатов, следовательно, требуется реакция разложения, которая менее эндотермична, и отсюда стоимость ниже, чем для карбаматов. Однако растворители типа с/ характеризуются относительно высоким капиталовложением, т.к. их вынуждены использовать в относительно низкой концентрации для предотвращения коррозионных явлений или альтернативно использовать материалы высокого качества, или легированную сталь, которые приводят к повышению текущих расходов. Можно также показать, что растворители типа b/ могут также приводить к тем же проблемам. Поэтому растворы моноэтаноламина (МЭА) диэтаноламина (ДЭА) используются как 15 25 вес. -ные, чтобы предотвратить серьезную коррозию из-за высокой концентрации соответствующего карбамата, следовательно, характеризуются более высокими капиталовложениями.

Известен способ удаления кислотных газов, таких как сероводород и/или двуокись углерода, из газообразной смеси, включающий абсорбцию кислотных газов растворителем водной смесью, содержащей диметилэтаноламин, и последующую регенерацию использованного растворителя.

Было обнаружено, что недостатки способов, известных в литературе, могут быть преодолены, если использовать в качестве растворителя водный раствор диметилэтаноламина соответствующей концентрации.

Настоящее изобретение предлагает способ для удаления кислотных газов, таких как серодовород и/или двуокись углерода, из газообразных смесей, включающий в основном абсорбцию кислотных газов растворителем и регенерацию использованного растворителя путем десорбции. Используемый растворитель представляет собой водную смесь диметилэтаноламина (ДМЭА) с концентрацией диметилэтаноламина от 410 до 70% по весу, предпочтительно от 40 до 55%
Это соединение приводит к образованию бикарбонатов или бисульфата, если присутствует сероводород, и дает возможность использовать высокие концентрации водного раствора без проблемы коррозии и подачи, даже при относительно низком парциальном давлении, двуокиси углерода.

Следует также отметить, что стоимость регенерации бикарбоната невысокая.

Способом изобретения можно очищать газообразные газы, в которых содержание кислотного газа в исходной загрузке составляет от 1 до 90% по объему, но особенно он применяется для таких смесей, которые содержат от 3 до 60% по объему.

По этому способу получают содержание двуокиси углерода в верхнем потоке из абсорбционной колонны от 0,5 до 5% по объему.

Схема применения способа согласно изобретению описывается ниже при помощи примера со ссылкой на чертеж, но не ограничивается им.

Газ, который подвергается обработке, подается по линии 1 в абсорбер 2, в который абсорбционный раствор подается по линии 3. Обработанный газ выходит по линии 4. Использованный раствор выгружается из нижней части 5 и после снятия давления в клапане 6 и подогрева в теплообменнике 7 подается в регенерационную колонну 8.

Через нижнюю часть колонны 8, которая снабжена подогревателем 9, регенерированный раствор 10 подается насосом 11 в абсорбер 2 после охлаждения в теплообменниках 7 и 12.

Кислотные газы 13, покидая колонну 8, охлаждаются в аппарате 14 и разделяются в колонне 15 на жидкий пар 16 (рециркулируется насосом 17) и кислотный газ 18, который в конце концов удаляется.

Газ и пар из верхней части абсорбера 2 и колонны 8 соответственно могут быть промыты небольшим количеством воды, чтобы предотвратить любую потерю растворителя в газообразном выходящем потоке.

Абсорбционная колонна может быть обеспечена дополнительным промежуточным теплообменником, если необходим строгий температурный контроль.

Водные линии для удаления амина и дополнительный теплообменник не показаны на чертеже.

Ниже приведены примеры, один из которых сравнительный, для лучшей иллюстрации изобретения.

Пример 1.

Способ осуществляется в колонне, содержащей 44 двухколпачковые тарелки диаметром 5,1 см, при этом используют 50 вес. смеси диметилэтаноламина (ДМЭА) и воды. Подаваемый природный газ (N м3/ч) содержит 20% двуокиси углерода и подается при 70 кг/см2. Поддерживается 70oC в нижней части и 50oC на верхней тарелке. Обработанный газ имеет остаточное содержание двуокиси углерода 1% при потоке растворителя 3,5 кг/ч.

Пример 2.

Способ осуществляют, используя ту же самую установку и тот же самый температурный уровень, как описано в примере 1, с той же самой газообразной загрузкой (расход, состав, давление), за исключением того, что в качестве растворителя используют смесь ДМЭА/вода при соотношении 40/60% по весу.

Обработанный газ имеет остаточное содержание двуокиси углерода 1% по объему при потоке растворителя 4,38 кг/ч.

Пример 3.

Способ осуществляют, используя ту же самую установку и тот же самый температурный уровень, что и в примере 1, с той же самой газообразной загрузкой (расход, состав, давление), за исключением того, что в качестве растворителя используют смесь ДМЭА/вода при соотношении 70/30% по весу.

Обработанный газ имеет остаточное содержание двуокиси углерода 1% по объему при потоке растворителя 2,5 кг/ч.

Пример 4 сравнительный.

Оперируют той же подачей при той же температуре и давлении в той же самой колонне, но используют поток растворителя, содержащий раствор диэтаноламина (ДЭА) (25 мас.) в воде, требуется скорость потока 7 кг/ч для получения газа, содержащего 1% двуокиси углерода.

Нигде не были сделаны прямые измерения теплового расхода в регенерационной колонне (содержащей 44 двухколпачковые тарелки диаметром 5,1 см, давление в верхней части 1,2 кг/см2, температура нижней части 120oC. Однако было подсчитано, что при использовании ДЭА потребляется на 30% больше тепла, чем в случае ДМЭА.

Использование ДЭА, следовательно, значительно повышает как капиталовложения, так и текущие расходы из-за больших энергетических расходов при манипулировании растворителя.

Похожие патенты RU2087181C1

название год авторы номер документа
СПОСОБ УДАЛЕНИЯ ДВУОКИСИ УГЛЕРОДА И/ИЛИ СЕРОВОДОРОДА ИЗ ГАЗООБРАЗНЫХ СМЕСЕЙ 1992
  • Карло Рескалли[It]
  • Антонио Пачифико[It]
  • Уго Мелис[It]
RU2072886C1
СПОСОБ АКТИВАЦИИ КАТАЛИТИЧЕСКОЙ КОМПОЗИЦИИ НА ОСНОВЕ СОЕДИНЕНИЯ ГАЛЛИЯ И ОКСИДА АЛЮМИНИЯ И КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ДЕГИДРИРОВАНИЯ С - С-ПАРАФИНОВ 1993
  • Родольфо Эцци[It]
  • Андреа Бартолини[It]
  • Франко Буономо[It]
RU2108861C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОБУТЕНА И АЛКИЛ-ТРЕТ-БУТИЛОВОГО ЭФИРА 1991
  • Ивано Миракка[It]
  • Джорджо Фуско[It]
RU2078074C1
СПОСОБ ПОЛУЧЕНИЯ МОЧЕВИНЫ 1990
  • Джузеппе Карлони[It]
  • Франко Гранелли[It]
RU2017727C1
Абсорбент для селективного выделения сероводорода 1981
  • Луиджи Гадзи
  • Карло Рескалли
  • Мария Антуанетта Скарамуччи
  • Алессандро Джиннази
SU1309902A3
КАТАЛИЗАТОР ДЛЯ ДЕГИДРОИЗОМЕРИЗАЦИИ Н-БУТАНА, КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ДЕГИДРОИЗОМЕРИЗАЦИИ Н-БУТАНА И СПОСОБ ПОЛУЧЕНИЯ ИЗОБУТЕНА 1991
  • Джузеппе Белусси[It]
  • Альдо Густи[It]
  • Лаура Дзанибелли[It]
RU2039596C1
КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ЖИДКОФАЗНОГО ПОЛУЧЕНИЯ МЕТАНОЛА ИЗ СИНТЕЗ-ГАЗА И СПОСОБ ПОЛУЧЕНИЯ МЕТАНОЛА 1992
  • Марио Марчионна[It]
  • Массимо Лами[It]
RU2060820C1
БЕТОННАЯ СМЕСЬ 1989
  • Альдо Преведелло[It]
  • Эдоардо Платоне[It]
  • Дарио Эрколани[It]
  • Элио Донати[It]
RU2045493C1
СПОСОБ ПОЛУЧЕНИЯ ЛЕГКИХ ОЛЕФИНОВ 1993
  • Рудольфо Ецци
  • Андреа Бартолини
  • Франко Буономо
RU2114809C1
ИНТЕГРИРОВАННЫЙ СПОСОБ ПОЛУЧЕНИЯ ОЛЕФИНОВ, В ЧАСТНОСТИ ЭТИЛЕНА И ПРОПИЛЕНА, ИЗ МЕТАНСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ 1993
  • Доменико Санфилиппо[It]
  • Стефано Россини[It]
RU2100334C1

Реферат патента 1997 года СПОСОБ УДАЛЕНИЯ КИСЛОТНЫХ ГАЗОВ, ТАКИХ, КАК СЕРОВОДОРОД И/ИЛИ ДВУОКИСЬ УГЛЕРОДА

Использование: в производстве удаления кислотных газов, таких как сероводород и/или двуокись углерода, из газообразной смеси. Сущность: газообразную смесь, содержащую сероводород и/или двуокись углерода, подвергают обработке водным раствором диметилэтаноламина концентрации 40 - 70%. Отработанный водный раствор диметилэтаноламина подвергают регенерации. 1 ил.

Формула изобретения RU 2 087 181 C1

Способ удаления кислотных газов, таких как сероводород и/или двуокись углерода из газообразной смеси, включающий абсорбцию их из газообразной смеси водным раствором диметилэтаноламина и последующую регенерацию отработанного водного раствора диметилэтаноламина, отличающийся тем, что водный раствор диметилэтаноламина берут концентрацией 40 70%

Документы, цитированные в отчете о поиске Патент 1997 года RU2087181C1

ДВУХТАКТНАЯ БЕСКРИВОШИПНАЯ ПОРШНЕВАЯ ТЕПЛОВАЯ МАШИНА-ДВИГАТЕЛЬ 2014
  • Шароглазов Борис Александрович
  • Терехов Сергей Юрьевич
  • Колбин Иван Ильич
RU2551717C1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 087 181 C1

Авторы

Карло Рескалли[It]

Антонио Пачифико[It]

Уго Мелис[It]

Даты

1997-08-20Публикация

1992-01-23Подача