СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 1997 года по МПК C22C21/12 

Описание патента на изобретение RU2087578C1

Изобретение относится к области цветной металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок сложной формы, в частности штамповок дисков автомобильных колес.

Известны сплавы, применяемые для штамповок: AB (системы Al-Mg-Si), AK6 и AK8 (системы Al-Mg-Si-Cu) (см.ГОСТ ъ 4784-74). Эти сплавы обладают средней прочностью, высокой технологичностью при литье и горячей деформации, однако одни имеют высокую коррозионную стойкость, но относительно невысокую прочность (AB: σВ(Д)>30 кгс/мм2), другие повышенные значения прочностных свойств (AK6: σВ(Д)>39 кгс/мм2), но пониженную коррозионную стойкость.

За прототип принят известный ковочный сплав AK6, содержащий следующие компоненты, мас. медь 1,8-2,6, магний 0,4-0,8, кремний 0,7-1,2, марганец 0,4-0,8 и алюминий остальное (ГОСТ 4784-74).

Техническим эффектом от реализации настоящего изобретения является повышение коррозионной стойкости, выносливости, а также получение возможности структурного упрочнения за счет сохранения нерекристаллизованной (полигонизованной) структуры после закалки.

Указанный технический эффект реализуется сплавом на основе алюминия, содержащим медь, магний, кремний, марганец и отличающимся тем, что он дополнительно содержит цинк при следующем соотношении компонентов, мас. медь 2,2-3,1, магний 0,6-1,0, кремний 1,0-1,8, марганец 0,4-0,8, цинк 1,2-1,8 и алюминий остальное.

Цинк в сплаве указанного состава находится в основном в твердом растворе и благодаря высокой растворимости в алюминии повышает термическую стабильность полигонизованной структуры. Цинк снижает температуру солидуса приблизительно на 20oC по сравнению со сплавом AK6. Со снижением температуры солидуса связано снижение температуры гомогенизации. В процессе гомогенизации при 470oC в течение 6 ч происходит распад твердого раствора марганца в алюминии с образованием мелкодисперсных, равномерно распределенных марганцовистых фаз, наличие которых в штамповке приводит к повышению температуры рекристаллизации. А так как температура закалки полуфабрикатов нового сплава также ниже (по сравнению со сплавом AK6), то все это позволяет сохранить после закалки совершенно нерекристаллизованную структуру, что и обусловливает возможность значительного упрочнения. Однако при использовании высокотемпературного старения с целью повышения коррозионной стойкости величина структурного упрочнения уменьшается, хотя структура и остается нерекристаллизованной.

Дисперсные выделения Al-Mn-фаз также способствуют повышению сопротивления коррозионному растрескиванию. Но основной вклад в повышение коррозионной стойкости делает хорошо развитая субзеренная структура: границы субзерен во время охлаждения с температуры закалки являются стоками для вакансий, уменьшая их концентрацию в приграничных зонах.

Пример осуществления изобретения.

В условиях ВИАМ были отлиты слитки, химический состав которых приведен в табл. 1. Из слитков после обточки и гомогенизации при 470±10oC в течение 6 ч были изготовлены поковки сечением 60х200 мм. Поковки подвергали термообработке по режиму: закалка с температуры 500±5o после выдержки 100 мин с охлаждением в холодную воду: старение при 200±5oC в течение 12 ч.

В табл.2 приведены механические свойства предложенного сплава в сравнении со свойствами сплава прототипа. Из таблицы следует, что предложенный сплава при практически одинаковых прочностных и пластических характеристиках со сплавом-прототипом имеет значительное превосходство по выносливости и по стойкости к коррозионному растрескиванию.

Похожие патенты RU2087578C1

название год авторы номер документа
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1992
  • Каковин В.М.
  • Молодчинина С.П.
  • Волков Ю.Ф.
  • Никонов Е.В.
RU2022045C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ С ПОНИЖЕННОЙ ПЛОТНОСТЬЮ И СПОСОБ ЕГО ОБРАБОТКИ 2011
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Ростова Татьяна Дмитриевна
  • Швечков Евгений Иванович
  • Фисенко Ирина Антонасовна
  • Кириллова Лидия Петровна
RU2468107C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2023
  • Манн Виктор Христьянович
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Иванова Анна Олеговна
RU2815086C1
ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2020
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Иванов Дмитрий Олегович
RU2754541C1
СПЛАВ ВЫСОКОЙ ПРОЧНОСТИ НА ОСНОВЕ АЛЮМИНИЯ 2018
  • Еремеев Владимир Викторович
  • Еремеев Николай Владимирович
  • Петров Анатолий Павлович
  • Злыднев Михаил Иванович
  • Злыднев Иван Михайлович
  • Цветков Александр Владимирович
RU2738817C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЯ ИЗ НЕГО 2020
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Иванов Дмитрий Олегович
RU2722950C1
ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ ПАЯНЫХ КОНСТРУКЦИЙ 2014
  • Мироненко Виктор Николаевич
  • Васенев Валерий Валерьевич
  • Бутрим Виктор Николаевич
  • Еремеев Владимир Викторович
  • Татарышкин Виктор Иванович
  • Данилин Вячеслав Владимирович
  • Попкова Ольга Геннадьевна
  • Голубятников Андрей Леонидович
RU2557043C1
Алюминиевый сплав 2016
  • Горностаев Игорь Николаевич
  • Бажанов Андрей Владимирович
  • Леонов Сергей Тимофеевич
  • Степанов Владимир Валерьевич
  • Лыкосова Екатерина Сергеевна
  • Белов Николай Александрович
  • Алабин Александр Николаевич
RU2647070C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2014
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Вахромов Роман Олегович
  • Рябов Дмитрий Константинович
  • Иванова Анна Олеговна
RU2576286C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 1998
  • Фридляндер И.Н.(Ru)
  • Колобнев Н.И.(Ru)
  • Хохлатова Л.Б.(Ru)
  • Каблов Е.Н.(Ru)
  • Давыдов В.Г.(Ru)
  • Чертовиков В.М.(Ru)
  • Толченникова Е.Г.(Ru)
  • Галкин Д.С.(Ru)
  • Можаровский С.М.(Ru)
  • Винклер Петер-Юрген
  • Лехельт Эрвин
  • Пфанненмюллер Томас
RU2133295C1

Иллюстрации к изобретению RU 2 087 578 C1

Реферат патента 1997 года СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к области цветной металлургии, а именно к получению сплавов на основе алюминия, предназначенных для изготовления штамповок сложной формы, в частности штамповок дисков автомобильных колес. Сплав на основе алюминия содержит следующие компоненты, мас.%: медь 2,2-3,1, магний 0,6-1,0, кремний 1,0-1,8, марганец 0,4-0,8 и цинк 1,2-1,8. 2 табл.

Формула изобретения RU 2 087 578 C1

Сплав на основе алюминия, содержащий медь, магний, кремний, марганец, отличающийся тем, что он дополнительно содержит цинк при следующем соотношении компонентов, мас.

Медь 2,2 3,1
Магний 0,6 1,0
Кремний 1,0 1,8
Марганец 0,4 0,8
Цинк 1,2 1,8
Алюминий Остальное-

Документы, цитированные в отчете о поиске Патент 1997 года RU2087578C1

ДВУХТАКТНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО ГОРЕНИЯ 1918
  • Саевич Н.А.
SU4784A1

RU 2 087 578 C1

Авторы

Корнилов В.Ф.

Кнутарев А.П.

Неустроев С.В.

Синякин Д.А.

Трахтенберг Д.И.

Лимарь В.А.

Легошина С.Ф.

Иванова А.П.

Даты

1997-08-20Публикация

1995-09-19Подача