Изобретение относится к области магнитных измерений и может быть использовано для абсолютных измерений индукции магнитного поля в диапазоне 0,5•10-4 Тл 16 Тл с использованием одного датчика.
Цель изобретения расширение диапазона и повышение точности.
На чертеже представлена блок-схема магнитомера.
Магнитомер содержит источник 1 света, волоконный световод 2, фотодетектор 3, резистор 4, конденсатор 5, катушку 6 индуктивности, устройство 7 с рабочими веществами, катушки 8 модуляции магнитного измеряемого поля, генератор 9 модуляции, диод 10, узкополосный усилитель 11, синхронный детектор 12, регистрирующий прибор 13, широкодиапазонный генератор 14, частотомер 15.
Магнитомер работает следующим образом.
Промодулированный генератором 14 световой поток источника 1 проходит через волоконный световод 2 и поступает на фотодетектор 3, ток которого с частотой, равной частоте широкополосного генератора 14, через резистор 4 и конденсатор 5 проходит по катушке 6 индуктивности и создает в ней линейно осциллирующее поле. При выполнении условия 2πfo=γBo (где fо резонансная частота осциллирующего поля, γ гиромагнитное отношение протона или электрона, B0 индукция измеряемого магнитного поля) устройством 7 с рабочими веществами поглощается магнитная энергия катушки, меняется ее добротность и, следовательно, меняется ток через катушку и падение напряжения на резисторе 4. Формируется резонансная кривая поглощения, ширина которой определяется внутриатомными взаимодействиями рабочих веществ. Катушка 8 модуляции подключена к низкочастотному генератору 9. Ток с частотой модуляции fм <f0, протекающий по катушке 8, модулирует измеряемое поле и с выхода диода 10 снимается производная кривой поглощения на фиксированной частоте модуляции. Сигнал ЯМР или ЭПР усиливается узкополосным усилителем 11, выход которого подключен к одному входу синхронного детектора 12, а ко второму входу подводится опорное напряжение от генератора 9 модуляции, выход синхронного детектора 12 подключен к регистрирующему прибору 13. Частота в момент резонанса измеряется частотомером 15.
Устройство 7 с рабочими веществами (фиг.2) состоит из двух ампул: внешней 16 и внутренней 17, вставленных одна в другую. Пространство между первой и второй ампулами заполнено веществом 18, например, органическим радикалом с узкой резонансной линией или парамагнитной солью, дающим сигнал ЭПР, а внутренняя ампула 17 заполняется рабочим веществом 19, например водным раствором MnSO4, дающим сигнал ЯМР. Введение парамагнитных ионов Mn+ уменьшает время релаксации протонов и исключает насыщение образца радиочастотным полем. Рабочие вещества берутся в соотношении 1:1 по объему. Это уменьшает коэффициент заполнения катушки 6 (фиг.1) одним рабочим веществом и, следовательно, приводит к снижению отношения сигнала к шуму. Однако уменьшение коэффициента заполнения компенсируется отсутствием электромагнитных наводок на волоконный световод и наличием высокочувствительных схем входных каскадов узкополосного усилителя.
Для измерения индукции поля в диапазоне (0,5 250)•10-4 Тл методом ЭПР необходимо перекрыть частотный диапазон 1 700 МГц. С использованием протонного резонанса указанный диапазон частот позволяет измерять индукцию магнитного поля в пределах 0,025 16 Тл.
Устройство позволяет проводить абсолютные измерения индукции в широком диапазоне магнитных полей с использованием фундаментальных констант-гиромагнитных отношений электрона и протона. При этом датчик может быть только один и удален от основного измерительного блока на достаточно большое расстояние, так как затухание в волоконном световоде незначительное.
При измерении индукции переменного поля необходимо соблюдать определенные условия. Резонансная линия сканируется с конечной средней скоростью зависящей от частоты измеряемого поля и амплитуды индукции B, и это накладывает определенные ограничения на частоту и амплитуду поля. В слабом поле зеемановская частота ωo=γB мала и, следовательно, адиабатический параметр может оказаться большим и сравнимым с B. С ростом поля скорость сканирования растет и в сильном поле становится сравнимой со скоростью поперечной релаксации спиновой системы τ-1. В обоих случаях нарушаются условия адиабатического прохождения линии, что приводит к погрешности измерения амплитуды магнитной индукции.
Для наблюдения дифференциального сигнала требуется модуляция измеряемого поля, при этом на частоту модуляции wм необходимо наложить некоторые ограничивающие условия. С одной стороны, ωм должна быть меньше ωo и частоты поперечной релаксации τ-1 с другой достаточна велика, чтобы имело место усреднение поля модуляции за время q сканирования резонансной линии. Резонанс фиксируется в момент, когда поле достигает своего амплитудного значения.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИТОМЕТР | 2000 |
|
RU2202805C2 |
Устройство для измерения индукции магнитного поля | 1980 |
|
SU883819A1 |
КВАНТОВЫЙ СТАНДАРТ ЧАСТОТЫ НА ГАЗОВОЙ ЯЧЕЙКЕ С ЛАЗЕРНОЙ ОПТИЧЕСКОЙ НАКАЧКОЙ | 2009 |
|
RU2408978C1 |
СПОСОБ ОПТИЧЕСКОГО ДЕТЕКТИРОВАНИЯ МАГНИТНОГО РЕЗОНАНСА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2483316C1 |
Способ модуляционно-фазовой регистрации сигналов ЭПР | 1986 |
|
SU1427264A1 |
Устройство для измерения магнитного поля | 1984 |
|
SU1213446A1 |
УСТРОЙСТВО для ИССЛЕДОВАНИЯ ДВОЙНОГО ЭЛЕКТРОННО-ЯДЕРНОГО РЕЗОНАНСА | 1968 |
|
SU219862A1 |
Щелочный самогенерирующийМАгНиТОМЕТР | 1977 |
|
SU796779A1 |
Радиоспектрометр | 1985 |
|
SU1283635A1 |
Радиоспектрометр электронного парамагнитного резонанса | 1985 |
|
SU1259166A1 |
Использование: контрольно-измерительная техника, в области магнитных измерений для абсолютных измерений индукции магнитного поля в диапазоне 0,5•10-4 - 16 Тл с использованием одного датчика. Сущность изобретения: устройство состоит из источника 1 света, волоконного световода 2, фотодетектора 3, резистора 4, конденсатора 5, катушки 6 индуктивности, устройства 7 с рабочими веществами 18, 19, заполняющими ампулы 16, 17, вставленными одна в другую, катушки 8 модуляции, генератора 9 модуляции, диода 10, узкополосного усилителя 11, синхронного детектора 12, регистрирующего прибора 13, широкодиапазонного генератора 14 и частотомера 15. 1 з. п. ф-лы, 2 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-08-20—Публикация
1992-12-28—Подача