Изобретение относится к области нефтехимической и нефтеперерабатывающей промышленности и может быть использовано при утилизации и переработке природного газа, биогаза, продуктов неполного сжигания каменного угля и отходов. Известны различные способы переработки и утилизации природного газа (Чернышкова Ф. А. Последние достижения в области разработки новых процессов переработки метана и этана. Обзор. Журнал прикладной химии, 1994, т. 87, в. 4, с. 542-549). Одним из направлений переработки низших углеводородов является процесс их неполного (парциального) окисления с получением кислородсодержащих продуктов. В частности, они могут быть получены либо с помощью каталитической окислительной конденсации метана, либо посредством прямого окисления метана без катализатора. Вместе с тем, известны способы переработки низших углеводородов в полезные продукты в плазмохимических реакторах с использованием различных электрических разрядов: (патент США N 5.205.912, кл. C 01 C 1/00, Конверсия метана с использованием импульсного микроволнового излучения), (патент Австралия, АИ-В-558882/90, кл. C 97 CO 27/20, C 07 CO 47/02, B 01 JO 19/08, C 07 CO 67/36. Процесс синтеза "ОКСО" продуктов с помощью плазмы и установка), содержащая плазменный реактор, используемый в этом процессе.
Природный газ превращается в плазмохимическом реакторе в ацетилен и этилен, а при добавлении кислорода, появляются кислородсодержащие продукты. Однако, селективность такого процесса и выход кислородсодержащих продуктов весьма малы. Причина этого в том, что продукты неполного окисления углеводородов: спирты, перекиси, альдегиды, эфиры и т.д. имеют более низкий энергетический порог диссоциации молекул, чем исходные углеводороды и конечные продукты их полного окисления диоксид углерода и вода. Поэтому они в первую очередь подвергаются окислительной деструкции в разряде. Словецкий Д.И. Разложение углеводородов в тлеющем разряде. Химия плазмы, М. Энергоиздат, 1981, т. 8, с. 189-229).
Наиболее близким прототипом является патент РСТ WO 93/16021 кл. C 07 C 2/76 Процесс переработки природного газа в полезные продукты, преимущественно ацетилен и устройство для проведения указанного процесса. Здесь используется газоразрядная кислородная плазма, полученная в микроволновом разряде, которая контактирует с природным газом. Однако, при таком способе переработки природного газа мала эффективность процесса конверсии, а выход кислородсодержащих продуктов чрезвычайно мал.
Задача изобретения осуществление неполного прямого окисления низших углеводородов с образованием преимущественно кислородсодержащих продуктов с помощью газоразрядной плазмы, созданной в результате ионизации смеси природного газа с кислородом или воздухом.
Цель достигается в плазмохимическом реакторе с электрическим разрядом, которые могут создавать низкотемпературную неравновесную плазму, где газ имеет температуру близкую к комнатной, а электроны в плазме обладают энергией (2-5 эВ), достаточной для химической активации молекул природного газа и кислорода, или воздуха. Такими разрядами, как известно, являются: барьерный, коронно-стримерный, высокочастотный, тлеющий и другие.
Окисление углеводородов в разрядной зоне реактора специально замедляется путем осуществления стимулированного фазового перехода газообразных продуктов реакции (спирты, альдегиды, кетоны и т.д.) в жидкость, например, путем охлаждения одного или обоих электродов и газа ниже точки кипения продуктов реакции.
Для электрического питания разряда в реакторе возможно использование как переменного (синусоидального напряжения), так и импульсного, когда за импульсом тока следует пауза. Последний вид напряжения применяется для повышения эффективности процесса конверсии. Экспериментально установлено, что выход продукта зависит от вида разряда, величины энерговклада в единицу объема газовой смеси и соотношения между длительностью импульса тока и паузы в разряде. Оптимальные величины лежат в интервале значений: минимальная величина паузы тока при использовании импульсного электрического разряда на порядок превышает длительность импульса тока, а максимальная равна периоду смены газа в реакторе.
Устройство, с помощью которого реализуется предложенный способ (фиг. 1), представляет из себя: плазмохимический реактор 1 с системой газового питания, содержащей баллон с природным газом 2 и баллон с кислородом 3, запорными вентилями 4 и тройником 5 для получения смеси газов. Отвод 6 служит для соединения с газовым хроматографом.
В плазмохимическом реакторе с барьерным разрядом, выбранном нами в качестве примера, разряд возникает в разрядной зоне 7, величина которой ограничена размерами заземленного электрода 8 и высоковольтного электрода 9. Для получения разряда, распределенного по большой площади электродов используется диэлектрический барьер 10. Высоковольтный электрод 9 плотно прижат к поверхности диэлектрического барьера 10. В качестве барьера использовано стекло или другие диэлектрики с диэлектрической проницаемостью ε=4-10. Заземленный электрод 8 представляет собой металлическую пластину, снабженную системой охлаждения 11, выполненную, например, в виде внутренних, последовательно соединенных пазов (змеевик), по которым протекает хладагент (охлаждающая жидкость или газ). Сконденсированные на охлажденном электроде 8 продукты реакции стекают с его поверхности в наклонный паз-коллектор 12, а затем попадают в продуктоприемник 13. Изолятор 14 разделяет высоковольтный 9 и заземленный 8 электроды, одновременно выполняя роль стенок реактора.
Высоковольтный генератор 16 представляет из себя источник переменного напряжения с частотой 1 3 кГц и амплитудой напряжения 10 кВ. При импульсном режиме питания реактора применялся высоковольтный генератор 16 с длительностью импульсов 60 100 мкс с амплитудой до 10 кВ и частотой повторения 1 3 кГц.
Когда для неполного окисления низших углеводородов вместо барьерного применяется коронно-стримерный разряд, устройство имело отличия (фиг. 2). Оба электрода 8 и 9 идентичны и выполнены металлическими. Их поверхности имеют острые выступы 10, например, в виде гребней, покрывающих рабочую площадь электрода, в разрядной зоне канавки 11, разделяющие соседние гребни, направлены в этом случае по направлению стока продуктов и служат каналами, по которым продукт стекает в наклонный паз-коллектор 12, откуда он попадает в продуктоприемник 13. В качестве высоковольтного генератора 16 в этом случае применялся генератор высоковольтных импульсов с параметрами: амплитуда напряжения 100 кВ, длительность импульсов 60 нс, частота повторения импульсов 100 Гц.
Получение жидкого продукта в предлагаемых устройствах происходит следующим образом. Регулировкой вентилей 4 на баллонах природного газа 2 и кислорода 3 добиваются нужного состава смеси (например, 70 об. природного газа и 30 об. кислорода). Смешиваясь в тройнике 5, газовая смесь поступает в плазмохимический реактор 1 и после конверсии может выходить из него через трубопровод 15. При подаче напряжения на высоковольтный электрод 9 от высоковольтного генератора 16 в разрядной зоне 7 реактора возникает газовый разряд.
В барьерном разряде, используемом нами в качестве примера, плазма образуется в результате протекания тока через множество самогасящихся и повторяющихся микроразрядов с длительностью 10-8 с и плотностью тока до 100 А/см2. Характерная температура электронов в плазме 4-5 эВ, при этом газ не подвергается существенному нагреву.
В разрядной плазме происходит образование атомарного кислорода, который взаимодействуя с метаном, образует различные радикалы, в процессе взаимодействия которых между собой и с молекулами метана образуются кислородсодержащие продукты (спирты, альдегиды, кетоны и т.д.). Последние возникают в виде паров, парциальное давление которых растет по мере их наработки и достигает насыщения. Наличие ионов в плазме способствует образованию зародышей конденсации кластеров, из которых могут образоваться капли путем слияния кластеров. Эти капли могут быть образованы как в разрядной зоне, так и при соприкосновении с охлажденным электродом, имеющим температуру, например, +12oC, что ниже точки кипения большинства образующихся кислородсодержащих продуктов.
Пример 1. Способ неполного окисления низших углеводородов в барьерном разряде.
Процесс проводят в плазмохимическом реакторе фиг. 1 с барьерным разрядом при атмосферном давлении при воздействии переменным напряжением. Разряд возбуждается в смеси природного газа с кислородом, пропускаемой через реактор. Измеряется расход газа, состав продуктов реакции, выход продуктов реакции в единицу времени и с учетом электрических характеристик разряда оценивается энергетическая цена продукта в кВт•ч/кг.
Условие и результаты процесса:
Состав смеси: 30 об. O2 + 70% природного газа
Амплитуда переменного напряжения 9 кВ
Частота 1 кГц
Мощность 7 Вт
Температура реактора 12oC
Расход газовой смеси 0,96 г/ч (0,8 л/ч)
Скорость образования жидкого продукта 0,285 г/ч
Массовая конверсия смеси в жидкие продукты 30%
Энергетическая цена безводного продукта 55 кВт•ч/кг
Состав жидких продуктов,
Вода 55
Муравьиная кислота 14
Метанол 10
Метилформиат 6
Этанол 7
Эфиры 7
Формальдегид 1
Пример 2. Доказательство роли стимулированного фазового перехода газообразных продуктов реакции в жидкие при охлаждении электрода
Условия процесса идентичны примеру 1 за исключением температуры электрода.
Условия и результаты процесса:
Смесь состава: 30 об. O2 + 70% природного газа
Частота 1 кГц
Амплитуда напряжения 8 кВ
Мощность в разряде 8 Вт
Температура электрода 110oC
Расход газовой смеси 2,2 г/ч (1,8 л/ч)
Скорость образования жидкого продукта 0,08 г/ч
Конверсия смеси в жидкие продукты 3,6%
Энергетическая цена безводного продукта 500 кВт•ч/кг
Состав жидких продуктов,
Вода 81
Метанол 18
Формальдегид 1
Сравнение величин энергетической цены обезвоженного продукта реакции, полученной в примерах 1 и 2, свидетельствует о роли стимулированного фазового перехода.
Пример 3. Влияние длительности паузы между последовательными импульсами тока разряда на эффективность процесса неполного окисления низших углеводородов.
Процесс проводят так же, как в примере 1, но в отличие от синусоидальной формы напряжения, между импульсами имеется пауза. Длительность этой паузы превышает длительность импульса напряжения в 15 раз.
Условия и результаты процесса:
Состав смеси: 30 об. O2 + 70% природного газа
Амплитуда импульса напряжения 8-9 кВ
Длительность импульса напряжения 60 мкс
Частота повторения импульсов 1 кГц
Мощность в разряде 12,5 Вт
Температура реактора 12oC
Расход газовой смеси 1,7 г/ч (1,4 л/ч)
Скорость образования жидкого продукта 0,92 г/ч
Массовая конверсия смеси в жидкие продукты 55%
Энергетическая цена безводного продукта 27 кВт•ч/кг
Состав жидких продуктов,
Вода 50
Муравьиная кислота 15
Метанол 11
Метилформиат 7
Этанол 8
Эфиры 8
Формальдегид 1
Вывод: Энергетическая цена безводного продукта снизилась в 2 раза вследствие оптимизации между энерговкладом и скоростью движения газа.
Пример 4. Использование воздуха вместо кислорода для окисления низших углеводородов.
Процесс проводят так же, как и в примере 3, но вместо кислорода используют воздух.
Условия и результаты процесса:
Состав смеси: 73% воздуха + 27% природного газа или 58% N2 + 14,5% O2 + 27,5% природного газа или 34 об. O2 без учета балластного газа
Амплитуда импульсов напряжения 9 кВ
Длительность импульсов 60 мкс
Частота повторения импульсов 1 кГц
Мощность в разряде 12,5 Вт
Температура реактора 12oC
Расход газовой смеси (без учета балластного газа) 1,7 г/ч (1,4 л/ч)
Скорость образования жидкого продукта 0,42 г/ч
Массовая конверсия смеси в жидкие продукты 25%
Энергетическая цена безводного продукта 60 кВт•ч/кг
Состав жидких продуктов,
Вода 50
Муравьиная кислота 15
Метанол 11
Метилформиат 7
Этанол 8
Эфиры 8
Формальдегид 1
Вывод. При использовании воздуха вместо кислорода, эффективность процесса неполного окисления остается достаточно высокой.
Пример 5. Использование импульсного коронно-стримерного разряда в процессе неполного окисления низших углеводородов.
Процесс проводят в плазмохимическом реакторе, показанном на фиг. 2. Разряд возбуждается в охлаждаемом реакторе. Система электродов: острие-острие.
Условия и результаты процесса:
Состав смеси: 30 об. О2 + 70% природного газа
Длительность импульса напряжения 60 нс
Частота повторения импульсов 100 Гц
Амплитуда импульсов напряжения 110 кВ
Мощность, поглощаемая в разряде 16 Вт
Температура реактора 12oC
Расход газовой смеси 2,4 г/ч (2 л/ч)
Скорость образования жидкого продукта 0,43 г/ч
Массовая конверсия смеси в жидкие продукты 18
Энергетическая цена безводного продукта 70 кВт•ч/кг
Состав жидких продуктов,
Вода 46
Муравьиная кислота 15
Метанол 12
Метилформиат 9
Этанол 8
Эфиры 9
Формальдегид 1
Вывод. Процесс неполного окисления низших углеводородов может осуществляться не только в барьерном разряде, но и в других видах разряда с неравновесной низкотемпературной плазмой, например, в импульсном коронно-стримерном разряде. При этом пауза тока подбирается в зависимости от величины энерговклада в конвертируемую смесь.
Наиболее целесообразным представляется использование данного способа переработки низших углеводородов непосредственно в местах добычи нефти и газа, где попутный нефтяной газ и природный газ могут быть переработаны в метанол и другие кислородсодержащие продукты, используемые для предотвращения образования гидратов, забивающих устья скважин и газопроводов.
Для удешевления этих продуктов электроэнергия для питания реакторов может вырабатываться непосредственно у скважин в мотор-генераторах, работающих на природном газе.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НИЗШИХ ОЛЕФИНОВ | 1994 |
|
RU2074230C1 |
СПОСОБ ПОЛУЧЕНИЯ НИЗШИХ ОЛЕФИНОВ | 1994 |
|
RU2063415C1 |
СПОСОБ ОЧИСТКИ ПРОМЫШЛЕННЫХ ГАЗОВ ОТ НИЗКОКОНЦЕНТРИРОВАННЫХ ТОКСИЧНЫХ ПАРООБРАЗНЫХ ПРИМЕСЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1996 |
|
RU2112589C1 |
СПОСОБ ОЧИСТКИ ВОДЫ ВЫСОКОВОЛЬТНЫМ ИМПУЛЬСНЫМ РАЗРЯДОМ И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2213702C1 |
СПОСОБ НАКАЧКИ ЛАМПЫ ТЛЕЮЩЕГО РАЗРЯДА С ЭЛЕКТРООТРИЦАТЕЛЬНЫМИ ГАЗАМИ В РАБОЧЕЙ СМЕСИ | 1995 |
|
RU2089971C1 |
УСТРОЙСТВО ДЛЯ ХИМИЧЕСКОГО ГАЗОФАЗНОГО ОСАЖДЕНИЯ АМОРФНЫХ ГИДРОГЕНИЗИРОВАННЫХ УГЛЕРОДНЫХ ПЛЕНОК НА ДИЭЛЕКТРИКИ | 1998 |
|
RU2149216C1 |
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ГАЗА В ЖИДКИЕ УГЛЕВОДОРОДЫ | 2009 |
|
RU2417250C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ ИЗОМЕРНОГО СТРОЕНИЯ | 1997 |
|
RU2123992C1 |
СПОСОБ СЕПАРАЦИИ МЕЛКОДИСПЕРСНЫХ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1997 |
|
RU2136382C1 |
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДСОДЕРЖАЩИХ ГАЗОВ | 2003 |
|
RU2249609C1 |
Изобретение относится к области нефтехимической и нефтеперерабатывающей промышленности и может использоваться на нефте- и газопромыслах, для утилизации и переработки природного газа, продуктов неполного сжигания каменного угля и отходов. Изобретение решает задачу переработки природного газа в кислородсодержащие продукты (спирты, альдегиды, эфиры и т.д.). Сущность изобретения заключается в использовании в разрядной зоне плазмохимического реактора стимулированного фазового перехода газообразных продуктов реакции в жидкость, например, посредством охлаждения одного или обоих электродов реактора ниже точки кипения продуктов реакции. 2 с. и 3 з.п. ф-лы, 2 ил., 7 табл.
Домовый номерной фонарь, служащий одновременно для указания названия улицы и номера дома и для освещения прилежащего участка улицы | 1917 |
|
SU93A1 |
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Авторы
Даты
1997-08-27—Публикация
1995-11-27—Подача