СПОСОБ ИЗМЕРЕНИЯ ФАЗОВОЙ НЕВЗАИМНОСТИ В КОЛЬЦЕВОМ РЕЗОНАТОРЕ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА Российский патент 1997 года по МПК H01S3/83 

Описание патента на изобретение RU2091937C1

Изобретение относится к квантовой электронике и может быть использовано в лазерной гирометрии и измерительной технике.

Известен способ измерения фазовой невзаимности в кольцевом резонаторе твердотельного лазера, основанный на измерении разности частот встречных волн, распространяющихся в кольцевом резонаторе твердотельного лазера [1]
Недостатком указанного способа измерения является ограничение точности измерения, связанное с наличием области захвата частот встречных волн, и достаточно сложная реализация способа, обусловленная необходимостью принятия мер по стабилизации режима двунаправленной генерации в твердотельном кольцевом лазере.

Известен также способ измерения фазовой невзаимности, основанный на использовании специфических свойств взаимодействия встречных волн в твердотельном кольцевом лазере [2] При реализации этого способа в твердотельном кольцевом лазере создают режим однонаправленной генерации, возбуждают релаксационные колебания, измеряют их частоты и по разности частот определяют величину фазовой невзаимности.

Недостатком этого способа, принятого за прототип, является низкое отношение сигнал/шум, ограничивающее точность измерений (П.А. Хандохин, Я.И. Ханин. Квантовая электроника. 1982, т. 9, N 3, с. 637-638). К недостаткам данного способа следует отнести также технические сложности, возникающие при реализации данного способа.

Цель изобретения устранение указанных выше недостатков, т.е. повышение точности измерения и упрощение реализации способа.

Цель достигается тем, что при измерении фазовой невзаимности в кольцевом резонаторе твердотельного лазера, включающем измерение частоты автомодуляционных колебаний, с помощью цепи полосовой положительной обратной связи модулируют эффективный коэффициент усиления кольцевого лазера, причем центральную частоту f0 полосового фильтра обратной связи и его полуширину выбирают, исходя из следующих условий: и , где ωo - циклическая релаксационная частота твердотельного лазера, а T1 -время релаксации инверсной населенности.

Техническая задача по п. 2 формулы изобретения достигается тем, что с помощью цепи положительной обратной связи модулируют уровень накачки активного элемента кольцевого лазера, при этом характеристики полосового фильтра цепи обратной связи удовлетворяют приведенным выше соотношениям.

Техническая задача по п.3 формулы изобретения достигается тем, что с помощью цепи полосовой положительной обратной связи модулируют уровень потерь внутри кольцевого резонатора лазера, причем центральная частота f0 полосового фильтра и его полуширина выбираются из условий и , где ωo циклическая релаксационная частота твердотельного лазера, а T1 время релаксации инверсной населенности.

На фиг. 1 показана принципиальная схема реализации способа по пп.1 и 2 формулы изобретения; на фиг.2 принципиальная схема реализации способа по п. 3; на фиг.3 исследованная схема реализации рассматриваемого способа.

На чертежах обозначено: активный элемент 1, зеркала кольцевого резонатора 2-4, фотоприемник 5, источник накачки 6, полосовой фильтр 7, усилитель 8, блок питания 9, модулятор потерь 10, кольцевой чип-лазер 11, фокусирующая система 12, выходной сигнал 13.

Принцип действия рассматриваемого изобретения заключается в следующем. В кольцевом лазере создается разность добротностей для встречных волн (например, при наложении постоянного магнитного поля на активный элемент), приводящая к установлению режима однонаправленной генерации.

С помощью цепи полосовой положительной обратной связи, модулирующей эффективный коэффициент усиления, в кольцевом лазере возбуждают автомодуляционные колебания интенсивности излучения кольцевого лазера. При указанном выше выборе параметров цепи обратной связи (частоты полосового фильтра f0 и его полуширины Δf) автомодуляционные колебания возбуждаются на одной из ветвей релаксационных колебаний кольцевого лазера, для которой частота релаксационных колебаний следующим образом зависит от расслойки собственных частот кольцевого резонатора Δν, определяемой фазовой невзаимностью в кольцевом резонаторе,
,
измеряя которую, нетрудно определить величину фазовой невзаимности.

Частота автомодуляционных колебаний, возбуждающихся в кольцевом лазере с цепью обратной связи, оказывается близкой к релаксационной частоте fр. Диапазон изменения частоты автомодуляции и, следовательно, диапазон измеряемой фазовой невзаимности определяются шириной полосы пропускания фильтра Δf.

Как известно, автомодуляционные колебания в кольцевом лазере могут наблюдаться и в отсутствие цепи полосовой обратной связи. В предлагаемом способе такие автомодуляционные колебания устраняются за счет создания разности добротностей резонатора для встречных волн (подавления одной из волн) и с помощью цепи обратной связи возбуждаются автомодуляционные колебания другого типа, имеющие частоту, близкую к релаксационной частоте fр. Благодаря этому ослабляется зависимость частоты автомодуляции от величины связи встречных волн через обратное рассеяние, являющееся одним из наиболее нестабильных параметров кольцевого лазера, что приводит к повышению точности измерения фазовой невзаимности.

Аналогичным образом производят измерения фазовой невзаимности в кольцевом резонаторе твердотельного кольцевого лазера при модуляции уровня накачки (п.2 формулы изобретения) и уровня потерь (п.3 формулы изобретения). Возможная реализация рассматриваемого способа показана на фиг.3. Фазовая невзаимность измерялась в резонаторе кольцевого чип-лазера 11, аналогично описанному в работе Д.А. Гарбузов и др. Квантовая электроника. 1989, 16, N 12, с. 2423-2425, который накачивался полупроводниковым лазером 6 с помощью фокусирующей системы 12. Цепь положительной обратной связи включала фотоприемник 5, сигнал с которого поступал на полосовой фильтр 7, а затем после усиления (усилителем 8) на управляемый блок питания 9. Изменение выходного напряжения блока питания 9 обеспечивало управление интенсивностью излучения полупроводникового лазера 6. Релаксационная частота чип-лазера равнялась 42,6 кГц. Центральная частота полосового фильтра была выбрана равной , полоса пропускания фильтра . Экспериментальные исследования и проведенное численное моделирование показывают, что включение цепи положительной обратной связи повышает стабильность частоты автомодуляции в несколько раз (в отсутствие положительной связи нестабильность выходного сигнала 10-15 Гц за 10 с, при включении полосовой положительной обратной связи измеренная нестабильность 3-4 Гц).

Таким образом, рассматриваемый способ измерения фазовой невзаимности отличается от прототипа простотой реализации, большей стабильностью, а следовательно, и точностью.

Похожие патенты RU2091937C1

название год авторы номер документа
СПОСОБ АКТИВНОЙ СТАБИЛИЗАЦИИ ЧАСТОТЫ ИЗЛУЧЕНИЯ КОЛЬЦЕВОГО ЛАЗЕРА 1991
  • Кравцов Н.В.
  • Ларионцев Е.Г.
RU2045117C1
СТАБИЛИЗИРОВАННЫЙ ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП 2004
  • Швартц Сильвен
  • Фенье Жилль
  • Покошолль Жан-Поль
RU2331846C2
МОНОБЛОЧНЫЙ КОЛЬЦЕВОЙ ЛАЗЕР 1991
  • Дедыш В.В.
  • Кравцов Н.В.
  • Надточеев В.Е.
  • Наний О.Е.
  • Рылов С.И.
RU2045116C1
СПОСОБ И УСТРОЙСТВО ДЛЯ СТАБИЛИЗАЦИИ ОПТИЧЕСКОЙ МОЩНОСТИ И СПЕКТРАЛЬНОГО СОСТАВА ИЗЛУЧЕНИЯ ВОЛОКОННОГО ЛАЗЕРА УЛЬТРАКОРОТКИХ ИМПУЛЬСОВ 2015
  • Мясников Даниил Владимирович
  • Бычков Илья Николаевич
RU2605639C1
ТВЕРДОТЕЛЬНЫЙ ЛАЗЕРНЫЙ ГИРОСКОП С МЕХАНИЧЕСКИ АКТИВИРУЕМОЙ УСИЛИВАЮЩЕЙ СРЕДОЙ 2007
  • Шварц Сильвэн
  • Гютти Франсуа
  • Пошолль Жан-Поль
  • Фенье Жилль
RU2437062C2
ЧЕТЫРЕХМОДОВЫЙ ГИРОСКОП НА СТАБИЛИЗИРОВАННОМ ТВЕРДОТЕЛЬНОМ ЛАЗЕРЕ БЕЗ ЗОНЫ НЕЧУВСТВИТЕЛЬНОСТИ 2006
  • Швартц Сильвен
  • Фёнье Жилль
  • Пошолль Жан-Поль
RU2382333C2
СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО АВТОМОДУЛИРОВАННОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ 1994
  • Николаева Ольга Юрьевна
  • Одинцов Анатолий Иванович
  • Федосеев Анатолий Иванович
  • Федянович Алексей Васильевич
RU2080717C1
ЛАЗЕР 1990
  • Данилейко М.В.
  • Кравчук А.Л.
  • Нечипоренко В.Н.
  • Целинко А.М.
  • Яценко Л.П.
SU1771369A1
СПОСОБ ПЕРЕДАЧИ КОМАНД УПРАВЛЕНИЯ НА БОРТ АЭРОЛОГИЧЕСКОГО РАДИОЗОНДА И РАДИОЛОКАЦИОННАЯ СИСТЕМА, ЕГО РЕАЛИЗУЮЩАЯ 2023
  • Носков Владислав Яковлевич
  • Галеев Ринат Гайсеевич
  • Богатырев Евгений Владимирович
  • Иванов Вячеслав Элизбарович
  • Малыгин Иван Владимирович
RU2804516C1
МНОГОМОДОВЫЙ ВОЛОКОННЫЙ ЛАЗЕРНЫЙ ГИРОСКОП 2018
  • Сахаров Вячеслав Константинович
RU2708700C2

Иллюстрации к изобретению RU 2 091 937 C1

Реферат патента 1997 года СПОСОБ ИЗМЕРЕНИЯ ФАЗОВОЙ НЕВЗАИМНОСТИ В КОЛЬЦЕВОМ РЕЗОНАТОРЕ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА

Использование: изобретение относится к лазерной технике. Сущность изобретения: способ измерения фазовой невзаимности в кольцевом резонаторе включает измерение релаксационных частот. В способе с помощью цепи полосовой положительной обратной связи модулируют эффективный коэффициент усиления кольцевого лазера или уровень накачки активного элемента, или уровень потерь внутри резонатора кольцевого лазера. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 091 937 C1

1. Способ измерения фазовой невзаимности в кольцевом резонаторе твердотельного лазера, включающий измерение релаксационных частот, отличающийся тем, что с помощью цепи полосовой положительной обратной связи модулируют эффективный коэффициент усиления кольцевого лазера, причем центральная частота полосового фильтра цепи обратной связи f0 и его полуширина Δf удовлетворяют следующим условиям:

и

где ωo - циклическая релаксационная частота кольцевого лазера;
Т1 время релаксации инверсной населенности.
2. Способ по п.1, отличающийся тем, что эффективный коэффициент усиления модулируют путем модуляции уровня накачки активного элемента кольцевого лазера. 3. Способ по п.1, отличающийся тем, что эффективный коэффициент усиления модулируют путем модуляции уровня потерь внутри резонатора кольцевого лазера.

Документы, цитированные в отчете о поиске Патент 1997 года RU2091937C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Optics Letters
Механизм для сообщения поршню рабочего цилиндра возвратно-поступательного движения 1918
  • Р.К. Каблиц
SU1989A1
Гребное колесо с поворотными лопастями, могущее служить двигателем 1921
  • Федотов М.А.
SU990A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Авторское свидетельство СССР N 1083875, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 091 937 C1

Авторы

Кравцов Николай Владимирович

Ларионцев Евгений Григорьевич

Даты

1997-09-27Публикация

1992-01-29Подача